Square T Beam

Written by Jerry Ratzlaff on . Posted in Structural

Square T Beam - Geometric PropertiesT beam square 1

area of a Square T Beam formula

\(\large{ A =  ws + ht  }\)

Perimeter of a Square T Beam formula

\(\large{ P =  2  \left( w + h + s  \right) }\)    

Distance from Centroid of a Square T Beam formula

\(\large{ C_x =  0  }\)

\(\large{ C_y =  \frac {  l^2t + s^2  \left( w - t  \right)   }  { 2 \left( ws + ht  \right)  }  }\)

Elastic section Modulus of a Square T Beam formula

\(\large{ S_{x} =  \frac { I_{x} }  { C_{y}   } }\)

\(\large{ S_{y} =  \frac { I_{y} }  { C_{x}   } }\)

Polar Moment of Inertia of a Square T Beam formula

\(\large{ J_{z} =  I_{x}  +  I_{y} }\)

\(\large{ J_{z1} =  I_{x1}  +  I_{y1} }\)

Radius of Gyration of a Square T Beam formula

\(\large{ k_{x} =  \sqrt  {  \frac { I_{xc} }  { A  }   }   }\)

\(\large{ r_{zc}{^2} =  k_{xc}{^2}  +  k_{yc}{^2} }\)

Second Moment of Area of a Square T Beam formula

\(\large{ I_{x} =   \frac  {  t  \left( w - C_y  \right)^3  +   w  \left[  w - \left( w - C_y \right)  \right]^3      -   \left( w - t \right)     \left[  w - \left( w - C_y \right) -t  \right]^3   }  {3}   }\)

\(\large{ I_{x} =   \frac  { ht^3  }  {24}   +    \frac  { w^3 s  }  {24}    }\)

\(\large{ I_{x1} =  I_{x}  +  A C_{y} }\)

\(\large{ I_{y1} =  I_{y1}  +  A C_{x} }\)

Torsional Constant of a Square T Beam formula

 \(\large{ J  =   \frac {    ws^3 + l -    \left(  \frac {s}{2}  \right)   t^3  }      {3}     }\)

 

Where:

\(\large{ A }\) = area

\(\large{ C }\) = distance from centroid

\(\large{ d }\) = distance from principle axis

\(\large{ I }\) = moment of inertia

\(\large{ J }\) = torsional constant

\(\large{ k }\) = radius of gyration

\(\large{ P }\) = perimeter

\(\large{ p }\) = principal axis

\(\large{ S }\) = elastic section modulus

 

Tags: Equations for Structural Steel