Exponent

Written by Jerry Ratzlaff on . Posted in Mathematics

 Laws of Exponents

Exponent (also called Indices, the plural of index) is how mant times you multiply the number.

\(\large{  a^m = a }\) is base, \(\large{ m }\) is exponent

Laws of Exponents Formulas

\(\large{  a^0 = 1   }\)

\(\large{  a^1 = a   }\)

\(\large{  a^m = \frac{1} {a^{-m} }   }\)

\(\large{  a^{-m} = \frac{1}{a^{m} }   }\)

\(\large{  a^{ \frac{1} {m} } =  ^m \sqrt {a}    }\)

\(\large{  a^{ \frac{m} {n} } =  ^n \sqrt {a ^m}    }\)

\(\large{  \frac {a^m} {a^n}  =  ^n \sqrt {a^{m-n} }    }\)

\(\large{  a^m * a^n  =  a^{m+n}     }\)

\(\large{  \left( a^m \right)^n  =  a^{mn}    }\)

\(\large{  \left( a * b \right)^m  =  a^{m} * a^{n}    }\)

\(\large{  \left( \frac {a}  {b} \right)^m  =  \frac {a^m}  {b^m}    }\)