# Right Isosceles Triangle

Written by Jerry Ratzlaff on . Posted in Plane Geometry

## • Right isosceles triangle (a two-dimensional figure) has one side a right 90° interior angle and the other two angles are 45°.
• Angle bisector of a right isosceles triangle is a line that splits an angle into two equal angles.
• Circumcircle is a circle that passes through all the vertices of a two-dimensional figure.
• Hypotenuse of a right isosceles triangle is the longest side or the side opposite the right angle.
• Inscribed circle is the Iargest circle possible that can fit on the inside of a two-dimensional figure.
• Median of a right isosceles triangle is a line segment from a vertex (coiner point) to the midpoint of the opposite side.
• Semiperimeter is one half of the perimeter.
• Side of a right triangle is one half of the perimeter.
• Two sides are congruent.
• 3 edges
• 3 vertexs
• a = opposite leg
• c = hypotenuse
• Angles:  ∠A, ∠B, ∠C
• Height:  $$h_a$$, $$h_b$$,  $$h_c$$
• Median:  $$m_a$$, $$m_b$$, $$m_c$$  -  A line segment from a vertex (corner point) to the midpoint of the opposite side
• Angle bisectors:  $$t_a$$, $$t_b$$, $$t_c$$  -  A line that splits an angle into two equal angles

### Angle bisector of a Right Isosceles Triangle formula

$$\large{ t_a = 2\;b\;c \;\; cos \; \frac { \frac {A}{2} }{ b \;+\; c } }$$

$$\large{ t_a = \sqrt { bc \; \frac { 1 \;-\; a^2 } { \left( b \;+\; c \right)^2 } } }$$

$$\large{ t_b = 2\;a\;c \;\; cos \; \frac { \frac {B}{2} }{ a \;+\; c } }$$

$$\large{ t_b = \sqrt { a\;c \; \frac { 1 \;-\; b^2 } { \left( a \;+\; c \right)^2 } } }$$

$$\large{ t_c = a\;b \; \sqrt { \frac { 2 }{ a \;+\; b } } }$$

Where:

$$\large{ t_a, t_b, t_c }$$ = angle bisector

$$\large{ A, B }$$ = angle

$$\large{ a, b, c }$$ = edge

### Area of a Right Isosceles Triangle formula

$$\large{ A_{area} = \frac {h\;b} {2} }$$

$$\large{ A_{area} = \frac {1} {2}\; b\;h }$$

$$\large{ A_{area} = a\;b\; \frac {\sin \;y} {2} }$$

Where:

$$\large{ A_{area} }$$ = area

$$\large{ a, b, c }$$ = edge

$$\large{ h }$$ = height

### Circumcircle of a Right sosceles Triangle formula

$$\large{ R = \frac { 1 } { 2 } \; \sqrt { a^2 + b^2 } }$$

$$\large{ R = \frac { H } { 2 } }$$

Where:

$$\large{ R }$$ = outcircle

$$\large{ a, b, c }$$ = edge

$$\large{ H }$$ = hypotenuse

### Height of a Right Isosceles Triangle formula

$$\large{ h_c = 2\; \frac {A_{area}}{b} }$$

Where:

$$\large{ h^c }$$ = height

$$\large{ A_{area} }$$ = area

$$\large{ a, b, c }$$ = edge

### Inscribed Circle of a Right Isosceles Triangle formula

$$\large{ r = \frac { a\;b } { a \;+\; b \;+\; c } }$$

$$\large{ r = \frac { a \;+\; b \;-\; c } { 2 } }$$

Where:

$$\large{ r }$$ = incircle

$$\large{ a, b, c }$$ = edge

### Median of a Right Isosceles Triangle formula

$$\large{ m_a = \sqrt { \frac { 4\;b^2 \;+\; a^2 }{ 2 } } }$$

$$\large{ m_b = \sqrt { \frac { 4\;a^2 \;+\; b^2 }{ 2 } } }$$

$$\large{ m_c = \frac {c} {2} }$$

Where:

$$\large{ m_a, m_b, m_c }$$ = median

$$\large{ a, b, c }$$ = edge

### Perimeter of a Right Isosceles Triangle formula

$$\large{ P = a + b + c }$$

Where:

$$\large{ P }$$ = perimeter

$$\large{ a, b, c }$$ = edge

### Side of a Right Isosceles Triangle formula

$$\large{ a = P - b - c }$$

$$\large{ a = 2\; \frac {A_{area}} {b\;\sin y} }$$

$$\large{ b = P - a - c }$$

$$\large{ b = 2\; \frac {A_{area}}{h} }$$

$$\large{ c = P - a - b }$$

Where:

$$\large{ a, b, c }$$ = edge

$$\large{ A_{area} }$$ = area

$$\large{ P }$$ = perimeter

## Trig Functions

• Find A
• given a c :  $$\; sin \; A= a \div c$$
• given b c :  $$\; cos \; A= b \div c$$
• given a b :  $$\; tan \; A= a \div b$$
• Find B
• given a c :  $$\; sin \; B= a \div c$$
• given b c :  $$\; cos \; B= b \div c$$
• given a b :  $$\; tan \; B= b \div a$$
• Find a
• given A c :  $$\; a= c*sin \; A$$
• given A b :  $$\; a= b*tan \; A$$
• Find b
• given A c :  $$\; b= c*cos \; A$$
• given A a :  $$\; b= a \div tan \; A$$
• Find c
• given A a :  $$\; c= a \div sin \; A$$
• given A b :  $$\; c= b \div cos \; A$$
• given a b :  $$\; c= \sqrt { a^2+b^2 }$$
• Find Area
• given a b :  $$\; Area= a\;b \div 2$$