# Parallelogram

Written by Jerry Ratzlaff on . Posted in Plane Geometry

## Parallelogram

• Parallelogram is a quadrilateral with two pair of parallel edges.
• Opposite sides are congurent and parallel.
• Opposite angles equal, having more or less 90°.
• 2 diagonals
• 4 edges
• 4 vertexs

### Angle of a Parallelogram formula

$$\large{ cos \; x = \frac {a^2 \;+\; b^2 \;-\; d'^2 }{2ab} }$$

$$\large{ cos \; y = \frac {a^2 \;+\; b^2 \;-\; D'^2 }{2ab} }$$

$$\large{ sin \; x = sin \; y \; \frac {A }{ab} }$$

### Area of a Parallelogram formula

$$\large{ A = bh }$$

### Diagonal of a Parallelogram formula

$$\large{ d' = \sqrt{ a^2 \;+\; b^2 \;-\; 2ab \; cos \; x } }$$

$$\large{ d' = \sqrt{ a^2 \;+\; b^2 \;+\; 2ab \; cos \; y } }$$

$$\large{ D' = \sqrt{ a^2 \;+\; b^2 \;-\; 2ab \; cos \; y } }$$

$$\large{ D' = \sqrt{ a^2 \;+\; b^2 \;+\; 2ab \; cos \; x } }$$

$$\large{ d' = \sqrt{ 2a^2 \;+\; 2b^2 \;-\; D'^2 } }$$

$$\large{ D' = \sqrt{ 2a^2 \;+\; 2b^2 \;-\; d'^2 } }$$

### Edge of a Parallelogram formula

$$\large{ a = \frac {P}{2} - b }$$

$$\large{ b = \frac {P}{2} - a }$$

$$\large{ b = \frac {A}{h} }$$

$$\large{ a = \frac {h_b}{sin\; x} }$$

$$\large{ a = \frac {h_b}{sin\; y} }$$

$$\large{ b = \frac {h_a}{sin\; x} }$$

$$\large{ b = \frac {h_a}{sin\; y} }$$

$$\large{ a = \sqrt{ \frac {D'^2 \;+\; d'^2 \;-\; 2b^2 }{2} } }$$

$$\large{ b = \sqrt{ \frac {D'^2 \;+\; d'^2 \;-\; 2a^2 }{2} } }$$

### Height of a Parallelogram formula

$$\large{ h_a = \frac {A}{b} }$$

$$\large{ h_a = b \; sin \; x }$$

$$\large{ h_a = b \; sin \; y }$$

$$\large{ h_b = a \; sin \; x }$$

$$\large{ h_b = a \; sin \; y }$$

### Perimeter of a Parallelogram formula

$$\large{ P = 2 \left( a+b \right) }$$

Where:

$$\large{ A }$$ = area

$$\large{ a, b }$$ = edge

$$\large{ A, B, C, D }$$ = vertex

$$\large{ d', D' }$$ = diagonal

$$\large{ h_a, h_b }$$ = height

$$\large{ P }$$ = perimeter

$$\large{ x }$$ = acute angles

$$\large{ y }$$ = obtuce angles