Oblique Cylinder

Written by Jerry Ratzlaff on . Posted in Solid Geometry

  • oblique cylinder 1Oblique cylinder (a three-dimensional figure) has both bases not alligned above each other and the center not at 90° to the other base center.
  • 2 bases

Height of a Oblique Cylinder  formula

\(\large{ h = l \; sin\;x  }\)

Where:

\(\large{ h }\) = height

\(\large{ x }\) = angle

\(\large{ l }\) = length

Lateral surface area of a Oblique Cylinder  formula

\(\large{ A_l = \left(2\;\pi\right) \;r\;l  }\)

Where:

\(\large{ A_l }\) = lateral surface area (side)

\(\large{ l }\) = length

\(\large{ r }\) = radius

\(\large{ \pi }\) = Pi

Surface area of a Oblique Cylinder  formula

\(\large{ A_s =  l + \left(2\;\pi\right) \;r^2  }\)

Where:

\(\large{ A_s }\) = surface area (bottom, top, side)

\(\large{ l }\) = length

\(\large{ r }\) = radius

\(\large{ \pi }\) = Pi

Volume of a Oblique cylinder formula

\(\large{ V = \pi\; r^2\;h }\)

Where:

\(\large{ V }\) = volume

\(\large{ h }\) = height

\(\large{ r }\) = radius

\(\large{ \pi }\) = Pi