Cone

Written by Jerry Ratzlaff on . Posted in Solid Geometry

  • cone 2coneCone (a three-dimensional figure) has one base tapering to an apex.

Base of a Cone formula

  • Circle

Height of a Cone formula

\(\large{ h = 3\; \frac{V}{\pi \;r^2} }\)

Where:

\(\large{ h }\) = height

\(\large{ V }\) = volume

\(\large{ r }\) = radius

Slant Height of a Cone formula

\(\large{ s = \sqrt {r^2+h^2} }\)

Where:

\(\large{ s }\) = slant height

\(\large{ A }\) = area

\(\large{ r }\) = radius

\(\large{ h }\) = height

Surface Area of a Cone formula

\(\large{ A_s = \pi\; r\; \left( r + \sqrt { h^2 + r^2 } \right) }\)

Where:

\(\large{ A_s }\) = surface area

\(\large{ \pi }\) = Pi

\(\large{ \sqrt a }\) = square root

\(\large{ r }\) = radius

\(\large{ h }\) = height

Volume of a Cone formula

\(\large{ V = \frac {1}{3}\; \pi\; r^2 }\)

\(\large{ V = \frac {1}{3} \;b\;h }\)

Where:

\(\large{ V }\) = volume

\(\large{ r }\) = radius

\(\large{ b }\) = base area

\(\large{ h }\) = height

\(\large{ \pi }\) = Pi

 

Tags: Equations for Volume