Right Hexagonal Prism
Right hexagon prism (a three-dimensional figure) is where each face is a regular polygon with equal sides and equal angles.
- Long diagonal always crosses the center point of the hexagon.
- Short diagonal does not cross the center point of the hexagon.
- 36 base diagonals
- 12 face diagonals
- 36 space diagonals
- 2 bases
- 18 edges
- 6 side faces
- 12 vertexs
Base Area of a Right Hexagonal Prism formula |
||
A_b \;=\; 3 \cdot \sqrt{3} \cdot \dfrac{ a^2 }{ 2 } | ||
Symbol | English | Metric |
A_b = base area | in^2 | mm^2 |
a = edge | in | mm |
Base Long Diagonal of a Right Hexagon formula
|
||
D_l \;=\; 2 \cdot a | ||
Symbol | English | Metric |
D_l = long diagonal | in | mm |
a = edge | in | mm |
Base Short Diagonal of a Right Hexagon formula
|
||
D_s \;=\; \sqrt{3} \cdot a | ||
Symbol | English | Metric |
D_s = short diagonal | in | mm |
a = edge | in | mm |
Side Diagonal of a Right Hexagonal Prism formula |
||
d' \;=\; \sqrt{ a^2 + h^2 } | ||
Symbol | English | Metric |
d' = diagonal | in | mm |
a = edge | in | mm |
h = height | in | mm |
Edge of a Right Hexagonal Prism formulas |
||
a \;=\; \dfrac{ A_l }{ 6 \cdot h } a \;=\; 3^{1/4} \cdot \sqrt{ 2 \cdot \dfrac{ V }{ 9 \cdot h } } a \;=\; \dfrac{1}{3} \cdot \sqrt{ 3 \cdot h^2 + \sqrt{3} \cdot A_s } - \sqrt{3} \cdot \dfrac {h}{3} a \;=\; 3^{1/4} \cdot \sqrt{2 \cdot \dfrac{ A_b }{ 9 } } |
||
Symbol | English | Metric |
a = edge | in | mm |
A_b = base area | in^2 | mm^2 |
h = height | in | mm |
A_l = lateral surface area | in^2 | mm^2 |
A_s = surface area | in^2 | mm^2 |
V = volume | in^3 | mm^3 |
Height of a Right Hexagonal Prism formulas |
||
h \;=\; 2 \cdot \sqrt{ 3 } \cdot \dfrac{ V }{ 9 \cdot a^2 } h \;=\; \dfrac{ A_s }{ 6 \cdot a } - \sqrt{ 3 } \cdot \dfrac{ a }{ 2 } |
||
Symbol | English | Metric |
h = height | in | mm |
a = edge | in | mm |
A_s = surface area | in^2 | mm^2 |
V = volume | in^3 | mm^3 |
Lateral Surface Area of a Right Hexagonal Prism formula |
||
A_l \;=\; 6 \cdot a \cdot h | ||
Symbol | English | Metric |
A_l = lateral surface area | in^2 | mm^2 |
a = edge | in | mm |
h = height | in | mm |
Surface Area of a Right Hexagonal Prism formula |
||
A_s \;=\; 6 \cdot a \cdot h + 3 \cdot \sqrt{ 3 } \cdot a^2 | ||
Symbol | English | Metric |
A_s = surface area | in^2 | mm^2 |
a = edge | in | mm |
h = height | in | mm |
Volume of a Right Hexagonal Prism formulas |
||
V \;=\; \dfrac{ 3 \cdot \sqrt{ 3 } }{ 2 } \cdot a^2 \cdot h V \;=\; 3 \cdot a \cdot b \cdot h |
||
Symbol | English | Metric |
V = volume | in^3 | mm^3 |
b = center | in | mm |
a = edge | in | mm |
h = height | in | mm |