Torus

Written by Jerry Ratzlaff on . Posted in Solid Geometry

  • torus 2torusTorus (a three-dimensional figure) has a shape like a donut.

 

 

 

 

 

 

 

formulas that use Hole Radius of a torus

\(\large{ R_h = R - r  }\)   

Where:

\(\large{ R_h }\) = radius of the hole

\(\large{ r }\) = radius of sphere

\(\large{ R }\) = radius of center of sphere

 

formulas that use Surface Area of a torus

\(\large{ S = 4 \; \pi^2 \; R\; r    }\)   

Where:

\(\large{ S }\) = surface area

\(\large{ \pi }\) = Pi

\(\large{ r }\) = radius of sphere

\(\large{ R }\) = radius of center of sphere

 

= [[Radius|ea]]us]]

formulas that use Volume of a torus

\(\large{ V = 2 \; \pi^2 \; R\; r^2  }\)   

Where:

\(\large{ V }\) = volume

\(\large{ \pi }\) = Pi

\(\large{ r }\) = radius of sphere

\(\large{ R }\) = radius of center of sphere