Speed of Sound

Written by Jerry Ratzlaff on . Posted in Classical Mechanics

Speed of Sound

Speed of sound ( \(a\) ) depends on what the medium is and the temperature of the medium. It is the distance traveled for a specific time through a medium from particle to particle.

Speed of Sound Formula

\(a = \sqrt   { \frac {K }   {\rho}   } \)          \( speed \; of \; sound  \;=\;  \sqrt   { \frac { ratio \; of \; specific\; heats }   { density }   } \)

\(a = \sqrt   { k   \frac { p   } {\rho}   } \)          \( speed \; of \; sound  \;=\;  \sqrt   { bulk \; modulus \;  \frac { pressure  } { density }   } \)

Where:

\(a\) = speed of sound

\(K\) = bulk modulus

\(\rho\) (Greek symbol rho) = density

\(k\) = ratio of specific heats

\(p\) = pressure