# Formula Symbols - V

Written by Jerry Ratzlaff on . Posted in Nomenclature & Symbols for Engineering, Mathematics, and Science

## Formula Symbols - V

For other symbols see:  A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

SymbolGreek SymbolDefinitionUSMetricValue
$$p_v$$ - vacuum pressure $$lb\;/\;in^2 \;or\; PSI$$ $$Pa$$ -
$$\varepsilon_0$$ varepsilon vacuum electric permittivity constant constant $$8.854\;187\;8128\;x\;10^{-12}\;F\;m^{-1}$$
$$\mu_0$$ mu vacuum magnetic permeability constant constant $$1.256\;637\;062\;12\;x\;10^{-6}\;N\;A^{-2}$$
$$Va$$ - Vadasz number dimensionless dimensionless  -
$$C_v$$, $$\;K_v$$ - valve flow coefficient $$lb\;/\;in^2 \;or\; PSI$$ $$Pa$$  -
$$P_1$$ - valve inlet pressure $$lb\;/\;in^2 \;or\; PSI$$ $$Pa$$  -
$$P_2$$ - valve outlet pressure $$lb\;/\;in^2 \;or\; PSI$$ $$Pa$$  -
$$F_o$$ - valve style modifier dimensionless dimensionless  -
$$C_v$$ - valve sizing coefficient - -  -
$$Re_v$$   valve Reynolds number dimensionless dimensionless  -
$$G_{vd}$$ - vapor density of gas $$lb\;/\;ft^3$$ $$kg\;/\;m^3$$  -
$$p_v$$ - vapor pressure $$lb\;/\;in^2 \;or\; PSI$$ $$Pa$$  -
$$p_s$$ - vapor pressure of the solution $$lb\;/\;in^2 \;or\; PSI$$ $$Pa$$  -
$$p_s^0$$ - vapor pressure of pure solution $$lb\;/\;in^2 \;or\; PSI$$ $$Pa$$  -
$$c$$, $$\;v$$, $$\;u$$, $$\;\omega$$ omega velocity $$ft\;/\;sec$$ $$m\;/\;s$$  -
$$v_{cm}$$   velocity center of mass $$ft\;/\;sec$$ $$m\;/\;s$$ -
$$C_v$$ - velocity coefficient - -  -
$$\nu$$ nu velocity gradient $$ft\;/\;sec$$ $$m\;/\;s$$  -
$$c_l$$ - velocity of longitudinal waves - -  -
$$c$$ - velocity of sound - -  -
$$c_t$$ - velocity of transverse waves - -  -
$$v_s$$ - velocity of steam $$ft\;/\;sec$$ $$m\;/\;s$$  -
$$v_w$$ - velocity of water $$ft\;/\;sec$$ $$m\;/\;s$$  -
$$\Delta v$$, $$\;dv$$, $$\;\Delta\omega$$ omega velocity differential $$ft\;/\;sec$$ $$m\;/\;s$$  -
$$\nu$$ nu velocity gradient $$ft\;/\;sec$$ $$m\;/\;s$$  -
$$VP$$ - velocity pressure $$in\;/\;wg$$ $$Pa$$  -
$$P$$, $$\;P_v$$ - velocity power $$ft-lbf\;/\;sec$$ $$J\;/\;s$$  -
$$p_{vc}$$ - vena contracta $$lb\;/\;in^2 \;or\; PSI$$ $$Pa$$  -
$$y$$ - vertical distance $$ft$$ $$m$$  -
$$y$$ - vertical position $$ft$$ $$m$$  -
$$R$$ - vertical reaction load at bearing point $$lbf$$ $$N$$  -
$$V$$ - vertical shear force $$lbf$$ $$N$$  -
$$v$$ - vibrational - -  -
$$\eta$$, $$\;\mu$$ eta, mu viscosity $$lbf-sec \;/\; ft^2$$ $$Pa-s$$  -
$$\eta$$ eta viscosity coefficient $$lbf-sec \;/\; ft^2$$ $$Pa-s$$  -
$$\Delta \eta$$, $$\;\eta_d$$ eta viscosity differential $$lbf-sec \;/\; ft^2$$ $$Pa-s$$  -
$$VI$$ - viscosity index - -  -
$$\eta_s$$, $$\;\mu_s$$ eta, mu viscosity of a solution used $$lbf-sec \;/\; ft^2$$ $$Pa-s$$  -
$$\eta$$ eta viscous force $$lbf-sec \;/\; ft^2$$ $$Pa- s$$  -
$$e$$ - void ratio - -  -
$$E$$, $$\;V$$ - volt $$volt$$ $$volt$$  -
$$E$$, $$\;V$$ - voltage $$volt$$ $$volt$$  -
$$VR$$ - voltage ratio - -  -
$$V$$, $$\;\upsilon$$ upsilon volume $$in^3 \;or\; ft^3$$ $$mm^3 \;or\; m^3$$  -
$$V_d$$, $$\;\Delta V$$ Delta volume differential $$ft^3$$ $$m^3$$  -
$$\phi$$ phi volume fraction - -  -
$$\theta$$ theta volume strain - -  -
$$\beta$$ beta volumetric coefficient of expansion $$1\;/\; ^\circ R$$ $$1\;/\; K$$  -
$$VE$$ - volumetric efficiency $$lbm\;/\;in^3$$ $$kg\;/\;mm^3$$  -
$$Q$$, $$\;V$$, $$\;\dot {V}$$ - volumetric flow rate $$ft^3\;/\;sec$$ $$m^3\;/\;s$$  -
$$B$$ - volumetric fraction - -  -
$$\Delta V$$ - volumetric thermal expansion $$ft^3$$ $$m^3$$  -
$$\alpha_v$$ alpha volumetric thermal expansion coefficient $$ft^3$$ $$m^3$$  -
$$R_k$$ - von Klitzing constant constant constant $$2.581\;280\;744\;34\;x\;10^4\;kg\;m^2\;s^{-3}\;A^{-2}$$