Average Angular Velocity Change in Velocity

Written by Jerry Ratzlaff on . Posted in Classical Mechanics

When an object makes changes in its angular velocity at different times that is an average angular velocity of any given velocities.

Average Angular Velocity change in Velocity FORMULA

\(\large{ \bar {\omega} \;= \; \frac { \omega_1 \;+\; \omega_2 \;+\; \omega_3 ... \omega_n } { t_1 \;+\; t_2 \;+\; t_3 ... t_n }   }\)         

\(\large{ \bar {\omega} = \frac { \omega_t } { t_t }    }\)         

Where:

\(\large{ \bar {\omega} }\)   (Greek symbol omega) = average angular velocities

\(\large{ \omega  }\)   (Greek symbol omega) = angular velocity

\(\large{ \omega_t  }\)   (Greek symbol omega) = total angular velocity

 \(\large{ t  }\) = time

\(\large{ t_t  }\) = total time

 

Tags: Equations for Velocity