Weber Number

Written by Jerry Ratzlaff on . Posted in Dimensionless Numbers

Weber number is a dimensionless number in fluid mechanics that is often useful in analysing fluid flows where there is an interface between two different fluids, especially for multiphase flows with strongly curved surfaces.

FORMULA

\( We = \frac { \rho  v^2  l  } {\sigma} \)

Where:

\(We\) = Weber number

\(\rho\) (Greek symbol rho) = mass density

\(v\) = velocity

\(l\) = characteristic length

\(\sigma\) (Greek symbol sigma) = surface tension

Solve for:

\( \rho = \frac { We   \sigma  } { v^2   l   } \)

\( v =  \sqrt { \frac { We   \sigma  } { \rho l  }   } \)

\( l =   \frac { We  \sigma  } { \rho   v^2 }   \)

\( \sigma =  \frac { \rho  v^2  l  } { We}\)

 

Tags: Equations for Flow Rate