Frequency

Written by Jerry Ratzlaff on . Posted in Electromagnetism

Frequency, abbreviated as f or FREQ, is the number of times an alternating current reverses itself in one second.  Expressed in Hertz (Hz), which is one cycle per second.

 

Frequency formulas

\(\large{ f =   \frac { 1 } { T  } }\)   
\(\large{ f = \frac { N_c } { t  }   }\)   
\(\large{ f = \frac{v}{ \lambda }   }\)   
\(\large{ f = \frac{c}{ \lambda }   }\)  
\(\large{ f = \frac{\omega}{ 2 \; \pi }   }\)  

Where:

\(\large{ f }\) = frequency

\(\large{ \omega }\)  (Greek symbol omega) = angular frequency

\(\large{ N_c }\) = number of cycles

\(\large{ \pi }\) = Pi

\(\large{ c }\) = speed of light

\(\large{ t }\) = time

\(\large{ T }\) = time period, the time required for one cycle or wave occillation

\(\large{ \lambda }\)  (Greek symbol \lambda) = wavelength

\(\large{ v }\) = wavelength velocity

Solve for:

\(\large{ \omega =  2 \;  \pi \; f    }\)   
\(\large{ c = \frac { \lambda } { f }    }\)   
\(\large{ T = \frac { 1 } { f }    }\)   
\(\large{ \lambda = \frac { c } { f }    }\)  
\(\large{ \lambda =  c  \; T }\)  
\(\large{ v = \frac { f } { \lambda }    }\)  

Tags: Equations for Current