Frequency

Written by Jerry Ratzlaff on . Posted in Electromagnetism

Frequency ( \(FREQ\) ) is the number of times an alternating current reverses itself in one second.  Expressed in Hertz (Hz), which is one cycle per second.

Frequency formula

(Eq. 1)  \(\large{ f =   \frac { 1 } { T  } }\)

(Eq. 2)  \(\large{ f = \frac { N_c } { t  }   }\) 

(Eq. 3)  \(\large{ f = \frac{v}{ \lambda }   }\)

(Eq. 4)  \(\large{ f = \frac{c}{ \lambda }   }\)

(Eq. 5)  \(\large{ f = \frac{\omega}{ 2 \pi }   }\)

Where:

\(\large{ f }\) = frequency

\(\large{ \omega }\)  (Greek symbol omega) = angular frequency

\(\large{ N_c }\) = number of cycles

\(\large{ \pi }\) = Pi

\(\large{ c }\) = speed of light or velocity

\(\large{ t }\) = time

\(\large{ T }\) = time period, the time required for one cycle or wave occillation

\(\large{ \lambda }\)  (Greek symbol \lambda) = wavelength

\(\large{ v }\) = wavelength velocity

Solve for:

\(\large{ \omega =  2 \pi f    }\)

\(\large{ c = \frac { \lambda } { f }    }\)

\(\large{ T = \frac { 1 } { f }    }\) 

(Eq. 1)  \(\large{ \lambda = \frac { c } { f }    }\)

(Eq. 2)  \(\large{ \lambda =  c T    }\)

\(\large{ v = \frac { f } { \lambda }    }\)

 

Tags: Equations for Current