Steam Economical Insulation Thickness

Written by Jerry Ratzlaff on . Posted in Fluid Dynamics

formula

\(C_i1 = 1000 \frac {\pi} {4}    \left( \left( d_1 +2L \right)^2  - d_1{^2}  \right) C_i2  \; \cdot \; N  \)

\(N = \frac { i \; \cdot \; \left( 1 + i \right)^m } { \left( 1 + i \right)^m -1 } \)

\(Q_r =  \frac  { 2 \% \: \left( T_s + T_a  \right)  }           {     \frac { l } { \lambda }  \; \cdot \; i \pi \:  \frac { d + 2L } { d }      \;  + \;     \frac  {  \frac { 2 } { d + 2L }  } { h }     }  \)

Where:

\(C_i1\) = annual average insulation cost

\(\pi\) = Pi

\(d\) = outside diameter of pipe

\(L\) = insulation thickness

\(N\) = rate of payback

\(C_i2\) = insulation and labor cost

\(i\) = annual itrest rate

\(m\) = payback period

\(Q_r\) = radiant heat

\(T_s\) = steam temperature

\(T_a\) = ambient temperature

\(l\) = pipe length

\(\lambda\) (Greek symbol lambda) = thermal conductivity coefficient

\(h\) = heat transfer coefficient