Momentum

Written by Jerry Ratzlaff on . Posted in Classical Mechanics

Momentummomentum banner

Momentum (linear motion or translational momentum) of an object is the amount of mass in motion.  Momentum is a vector quantity having magnitude and direction, some of these include acceleration, displacement, drag, force, lift, thrust, torque, velocity, and weight.

Momentum Formula

\(p = m   v   \)

Where:

\(p \) = momentum

\(m \) = mass

\(v \) = velocity

Velocity Change Momentum

Velocity Change Momentum Formula

\(p = m   \left( v_i \; - \; v_f   \right)   \)

Where:

\(p \) = momentum

\(m \) = mass

\(v_i \) = initial velocity

\(v_f \) = final velocity

Mass Distributed Momentum

Mass Distributed Momentum Formula

\(p = {mv}_i \; - \; {mv}_f  \)

Where:

\(p \) = momentum

\({mv}_i \) = initial mass velocity

\({mv}_f \) = final mass velocity

Momentum Change Momentum

Momentum Change Momentum Formula

\(p = p_i \; - \; p_f  \)

Where:

\(p \) = momentum

\(p_i \) = initial momentum

\(p_f \) = final momentum

Elastic Collision Momentum

Momentum is a conserved quantity meaning the total momentum of a system will always stay the same no matter the changes to the system.

Elastic Collision Momentum Formula

\(p_t = p_i1 \; + \; p_i2  =  p_f1 \; + \; p_f2 \)

Where:

\(p_t \) = total momentum

\(p_i \) = initial momentum

\(p_f \) = final momentum

Rotational Momentum

Angular momentum is how much an object is rotating.

Rotational Momentum FORMULA

\(L =  r  p \)

\(L =  I  \omega \)

Where:

\(L  \) = rotational momentum (angular momentum)

\(r  \) = vector length, directed from the center of rotation to the momentum point

\(p  \) = linear momentum vector

\(I  \) = moment of inertia

\(\omega \) (Greek symbol omega) = angular velocity

 

Tags: Equations for Velocity Equations for Mass