Linear Thermal Expansion Coefficient

Written by Jerry Ratzlaff on . Posted in Thermodynamics

Linear thermal expansion coefficient is a porportional change in the origional length and change in temperature due to the heating or cooling of an object.

formula

\(\alpha_l =  \frac { \Delta l } { l_i  \Delta T   }  \)

Where:

\(\alpha_l\) (Greek symbol alpha) = linear thermal expansion coefficient

\(\Delta l \) = initial length minus final length

\( l_i\) = initial length

\( l_f\) = final length

\(\Delta T \) = initial temperature minus final temperature

\( T_i\) = initial temperature

\( T_f\) = final temperature

\(\alpha\) (Greek symbol alpha) = thermal expansion coefficient

Solve for:

\(\Delta_l =  \alpha l_i   \Delta T   \)

\( l_f =  \alpha l_i   \Delta T + l   \)

\( l_i =  \frac {l_f} {\alpha \Delta T +1  }   \)

\( \Delta T = \frac {\Delta l}{\alpha l_i  } \)

\(T_f = \frac {\Delta l} {\alpha l_i} +T_i  \)

\(T_i =  T_f  \frac {\Delta l} {\alpha l_i} \)

 

Tags: Equations for Thermal Expansion Equations for Coefficient