Volumetric Thermal Expansion Coefficient

Written by Jerry Ratzlaff on . Posted in Thermodynamics

formula

\(\alpha_v =  \frac { \Delta V } { V_i \Delta T  }  \)

Where:

\(\alpha_v\) (Greek symbol alpha) = volumetric thermal expansion coefficient

\(\Delta V \) = initial volume minus final volume

\( V_i\) = initial volume

\( V_f\) = final volume

\(\Delta T \) = initial temperature minus final temperature

\( T_i\) = initial temperature

\( T_f\) = final temperature

\(\alpha\) (Greek symbol alpha) = thermal expansion coefficient

Solve for:

\(\Delta V =  \alpha_v  V_i   \Delta T   \)

\( V_f =  \alpha_v V_i   \Delta T + V_i   \)

\( V_i =  \frac {V_f} {\alpha_v \Delta T +1  }   \) 

\( \Delta T = \frac {\Delta V}{\alpha_v  V_i  } \)

\(T_f = \frac {\Delta V} {\alpha_v  V_i} +T_i  \)

\(T_i =  T_f  \frac {\Delta V} {\alpha_v  V_i} \)