Volumetric Thermal Expansion Coefficient

Written by Jerry Ratzlaff on . Posted in Thermodynamics

Volumetric thermal expansion coefficient, abbreviated as \(\alpha_v\) (Greek symbol alpha), also known as coefficient of volumetric thermal expansion, is the ratio of the change in size of a material to its change in temperature.

 

Volumetric Thermal Expansion Coefficient FORMULAs

\(\large{ \alpha_v  =  \frac { 1 }{ V } \; \frac {\Delta V } {\Delta T}   }\)   
\(\large{ \alpha_v  =  \frac{ v_f \;-\; v_i }{ v_i \; \left( T_f \;-\; T_i  \right)   }   }\)   
 \(\large{ \alpha_v  =  3 \;  \alpha_i   }\)  

Where:

\(\large{ \alpha_v }\)  (Greek symbol alpha) = volumetric thermal expansion coefficient

\(\large{ \alpha_l }\)   (Greek symbol alpha) = linear thermal expansion coefficient

\(\large{ \Delta T }\) = temperature differential

\(\large{ T_f }\) = final temperature

\(\large{ T_i }\) = initial temperature

\(\large{ v_f }\) = final velocity

\(\large{ v_i }\) = initial velocity

\(\large{ V }\) = volume of object

\(\large{ \Delta V }\) = volume differential

\(\large{ T_f }\) = final volume

\(\large{ T_i }\) = initial volume

 

Tags: Equations for Thermal Equations for Coefficient Equations for Volume