# Cantilever Beam - Uniformly Distributed Load

Written by Jerry Ratzlaff on . Posted in Structural Engineering

## Cantilever Beam - Uniformly Distributed Load formulas

 $$\large{ R = V = w\;L }$$ $$\large{ V_x = w\;x }$$ $$\large{ M_{max} \; }$$   (at fixed end)   $$\large{ = \frac {w\; L^2} {2} }$$ $$\large{ M_x = \frac { w\;x^2 } {2} }$$ $$\large{ \Delta_{max} \; }$$   (at free end)   $$\large{ = \frac {w\; L^4} {8 \;\lambda\; I} }$$ $$\large{ \Delta_x = \frac {w} {24\; \lambda\; I} \; \left( x^4 - 4\;L^3\;x + 3\;L^4 \right) }$$

### Where:

$$\large{ I }$$ = moment of inertia

$$\large{ L }$$ = span length of the bending member

$$\large{ M }$$ = maximum bending moment

$$\large{ R }$$ = reaction load at bearing point

$$\large{ V }$$ = shear force

$$\large{ w }$$ = load per unit length

$$\large{ W }$$ = total load from a uniform distribution

$$\large{ x }$$ = horizontal distance from reaction to point on beam

$$\large{ \lambda }$$   (Greek symbol lambda) = modulus of elasticity

$$\large{ \Delta }$$ = deflection or deformation