# Trapezoid

Written by Jerry Ratzlaff on . Posted in Plane Geometry

• Trapezoid (a two-dimensional figure) is a quadrilateral that has a pair of parallel opposite sides.
• Acute angle measures less than 90°.
• Diagonal is a line from one vertices to another that is non adjacent.
• No interior angles are equal.
• Obtuse angle measures more than 90°.
• Quadrilateral (a two-dimensional figure) is a polygon with four sides.
• a & c are bases
• b & d are legs
• a ∥ c
• a ≠ c
• ∠A + ∠B = 180°
• ∠C + ∠D = 180°
• 2 diagonals
• 4 edges
• 4 vertexs

## Area of a Trapezoid formulas

 $$\large{ A_{area} = h \; \left( \frac{c \;+\; a}{2 } \right) }$$ $$\large{ A_{area} = m\;h }$$

### Where:

$$\large{ A_{area} }$$ = area

$$\large{ a, b, c, d }$$ = edge

$$\large{ h }$$ = height

$$\large{ m }$$ = midline

## Diagonal of a Trapezoid formulas

 $$\large{ d' = \sqrt{ a^2 \;+\; b^2 \;-\; 2\;a\; \sqrt{b^2 \;-\; h^2} } }$$ $$\large{ D' = \sqrt{ a^2 \;+\; d^2 \;-\; 2\;a\; \sqrt{d^2 \;-\; h^2} } }$$

### Where:

$$\large{ d', D' }$$ = diagonal

$$\large{ a, b, c, d }$$ = edge

$$\large{ h }$$ = height

## Distance from Centroid of a Trapezoid formulas

 $$\large{ C_x = \frac{ 2\;c\;g \;+\; c^2 \;+\; g\;a \;+\; c\;a \;+\; a^2 }{ 3 \left( { c \;+\; a } \right) } }$$ $$\large{ C_y = \frac { h }{ 3} \; \left( \frac{ 2c \;+\; a }{c \;+\; a} \right) }$$

### Where:

$$\large{ C }$$ = distance from centroid

$$\large{ a, b, c, d }$$ = edge

$$\large{ h }$$ = height

## Elastic Section Modulus of a Trapezoid formulas

 $$\large{ S_x = \frac{ I_x }{ C_y } }$$ $$\large{ S_y = \frac{ I_y }{ C_x } }$$

### Where:

$$\large{ S }$$ = elastic section modulus

$$\large{ C }$$ = distance from centroid

$$\large{ I }$$ = moment of inertia

## Height of a Trapezoid formulas

 $$\large{ h = \frac { 2\; A_{area} }{c \;+\; a} }$$ $$\large{ h = \frac { A_{area} }{m} }$$

### Where:

$$\large{ h }$$ = height

$$\large{ A_{area} }$$ = area

$$\large{ a, b, c, d }$$ = edge

$$\large{ h }$$ = height

## Midline of a Trapezoid formula

 $$\large{ m = \frac{a \;+\; c}{2} }$$

### Where:

$$\large{ m }$$ = midline

$$\large{ a, b, c, d }$$ = edge

## Perimeter of a Trapezoid formulas

 $$\large{ P = a + b + c + d }$$ $$\large{ P = \sqrt {h^2 + g^2} + \sqrt {h^2 + \left( a - c - g \right)^2 } + a + c }$$

### Where:

$$\large{ P }$$ = perimeter

$$\large{ a, b, c, d }$$ = edge

$$\large{ h }$$ = height

## Plastic Section Modulus of a Trapezoid formulas

 $$\large{ Z_x = \frac{ h^2 \; \left( g\;c^2 \;+\; 14\;c\;a \;+\; g\;a^2 \right) }{ 12\; \left( c \;+\; a \right) } }$$ $$\large{ Z_y = \frac{ 6\;c\;a\;h \;-\; 3\;c^2\; h \;-\; 8\;c \;+\; 8\;a \;+\; 4\;g^2 \;h \;-\; 8\;g }{ 24} }$$

### Where:

$$\large{ Z }$$ = plastic section modulus

$$\large{ a, b, c, d }$$ = edge

$$\large{ h }$$ = height

## Polar Moment of Inertia of a Trapezoid formulas

 $$\large{ J_{z} = I_x + I_y }$$ $$\large{ J_{z1} = I_{x1} + I_{y1} }$$

### Where:

$$\large{ J }$$ = torsional constant

$$\large{ I }$$ = moment of inertia

## Radius of Gyration of a Trapezoid formulas

 $$\large{ k_{x} = \frac {h}{6} \; \sqrt{ 2 + \frac{ 4\;c\;a}{ \left( c \;+\; a \right)^2 } } }$$ $$\large{ k_{y} = \sqrt { \frac {I_y} {A_{area}} } }$$ $$\large{ k_{z} = \sqrt { k_{x}{^2} + k_{y}{^2} } }$$ $$\large{ k_{x1} = \frac{1}{6} \; \sqrt{ \frac{ 6\;h^2 \; \left( 3\;c \;+\; a \right) }{c \;+\; a} } }$$ $$\large{ k_{y1} = \sqrt { \frac {I_{y1}} {A_{area}} } }$$ $$\large{ k_{z1} = \sqrt { k_{x1}{^2} + k_{y1}{^2} } }$$

### Where:

$$\large{ k }$$ = radius of gyration

$$\large{ a, b, c, d }$$ = edge

$$\large{ h }$$ = height

$$\large{ k }$$ = radius of gyration

## Second Moment of Area of a Trapezoid formulas

 $$\large{ I_{x} = \frac{ h^3 \; \left( c^2\; 4\;c\;a \;+\; a^2 \right) }{ 36 \; \left( c \;+\; a \right) } }$$ $$\large{ I_{y} = \frac{ h \; \left( 4\;c\;a\;g^2 \;+\; 3\;c^2\; a\;g \;-\; 3\;c\;a^2\; g \;+\; c^4 \;+\; a^4 \;+\; 2\;c^3 \;a \;+\; c^2 \;g^2 \;+\; c^3 \;g \;+\; 2\;c\;a^3 \;-\; g\;a^3 \;+\; a^2\; g^2 \right) } { 36 \; \left( c \;+\; a \right) } }$$ $$\large{ I_{x1} = \frac{ h^3 \; \left( 3\;c\;+\;a \right) }{12} }$$ $$\large{ I_{y1} = \frac{ h \; \left( c^3 \;+\; 3\;c\;g^2 \;+\; 3\;c^2\; g \;+\; a^3 \;+\; g\;a^2 \;+\; c\;a^2 \;+\; a\;g^2 \;+\; 2\;c\;a\;g \;+\; a\;c^2 \right) }{12} }$$

### Where:

$$\large{ I }$$ = moment of inertia

$$\large{ a, b, c, d }$$ = edge

$$\large{ h }$$ = height

$$\large{ I }$$ = moment of inertia

$$\large{ k }$$ = radius of gyration

## Side of a Trapezoid formulas

 $$\large{ a = 2 \; \frac { A_{area} }{h} - c }$$ $$\large{ b = P - c - a - d }$$ $$\large{ c = 2 \; \frac {A_{area} }{h} - a }$$ $$\large{ d = P - c - a - b }$$

### Where:

$$\large{ a, b, c, d }$$ = side

$$\large{ A_{area} }$$ = area

$$\large{ a, b, c, d }$$ = edge

$$\large{ h }$$ = height