Pipe Sizing for Condensate Recovery

Written by Jerry Ratzlaff on . Posted in Fluid Dynamics

 

Condensate Recovery Pressure Loss through piping Formula

\(\large{ p_l =   \frac  { 1000 \; \mu \;  l \;  v_c{^2}  }  {2\;d  \; V_{temp}  }   }\) 
Symbol English Metric
\(\large{ p_l }\) = condensate pressure loss \(\large{\frac{lbf}{in^2}}\)   \(\large{Pa}\)  
\(\large{ v_c }\) = condensate velocity  \(\large{\frac{ft}{sec}}\)   \(\large{\frac{m}{s}}\) 
\(\large{ \mu }\)  (Greek symbol mu) = friction coefficient  \(\large{ dimensionless }\) 
\(\large{ d }\) = inside diameter of pipe  \(\large{ in }\)      \(\large{ mm }\)  
\(\large{ l }\) = pipe length  \(\large{ ft }\)     \(\large{ m }\)   
\(\large{ V_{temp} }\) = temporary specific volume variable \(\large{\frac{ft^3}{lbm}}\)  \(\large{\frac{m^3}{kg}}\) 

 

Condensate Recovery Velocity through piping Formula

\(\large{ v_c = \frac {  1000\;m_c  \;   V_{temp}  }    { 3.6\; \pi \; { \left( \frac {d}{2} \right) ^2  }   } }\) 
Symbol English Metric
\(\large{ v_c }\) = condensate velocity \(\large{\frac{ft}{sec}}\)    \(\large{\frac{m}{s}}\) 
\(\large{ m_c }\) = condensate load   \(\large{lbm}\)  \(\large{kg}\) 
\(\large{ d }\) = inside diameter of pipe  \(\large{ in }\)     \(\large{ mm }\)   
\(\large{ \pi }\) = Pi   \(\large{3.141 592 653 ...}\)
\(\large{ V_{temp} }\) = temporary specific volume variable  \(\large{\frac{ft^3}{lbm}}\) \(\large{\frac{m^3}{kg}}\) 

 

Condensate Recovery Steam Pressure Loss through piping Formula

\(\large{ p_l =   \frac  { \mu \;  l \;  v_s{^2} }  {2\;d \;  V_{temp} }   }\) 
Symbol English Metric
\(\large{ p_l }\) = steam pressure loss \(\large{\frac{lbf}{in^2}}\)  \(\large{Pa}\) 
\(\large{ \mu }\)  (Greek symbol mu) = friction coefficient  \(\large{ dimensionless }\) 
\(\large{ d }\) = inside diameter of pipe  \(\large{ in }\)    \(\large{ mm }\)  
\(\large{ l }\) = pipe length  \(\large{ ft }\)    \(\large{ m }\)  
\(\large{ v_s }\) = steam velocity \(\large{\frac{ft}{sec}}\)  \(\large{\frac{m}{s}}\) 
\(\large{ V_{temp} }\) = temporary specific volume variable \(\large{\frac{ft^3}{lbm}}\)  \(\large{\frac{m^3}{kg}}\) 

 

Piping Designer Logo 1

 

 

 

Tags: Pipe Sizing Equations Condensate Equations