# Two Span Continuous Beam - Equal Spans, Uniform Load on One Span

Written by Jerry Ratzlaff on . Posted in Structural

## Two Span Continuous Beam - Equal Spans, Uniform Load on One Span formulas

 $$\large{ R_1 = V_1 = \frac{7\;w\;L}{16} }$$ $$\large{ R_2 = v_2 + V_3 = \frac{5\;w\;L}{8} }$$ $$\large{ R_3 = V_3 = \frac{w\;L}{16} }$$ $$\large{ V_2 = \frac{9\;w\;L}{16} }$$ $$\large{ M_{max} \; }$$ at  $$\large{ \left( x = \frac{7\;L}{16} \right) = \frac{49\;w\;L^2}{512} }$$ $$\large{ M_1 \; }$$ at support  $$\large{ \left( R_2 \right) = \frac{w\;L^2}{16} }$$ $$\large{ M_x \; \left( x < L \right) = \frac{w\;x}{16} \; \left( 7\;L - 8\;x \right) }$$ $$\large{ \Delta_{max} \; \left( 0.472 \; L \right) }$$  from  $$\large{ \left( R_1 \right) = 0.0092 \; \frac{w\;L^4}{ \lambda\; I} }$$

### Where:

$$\large{ I }$$ = moment of inertia

$$\large{ L }$$ = span length of the bending member

$$\large{ M }$$ = maximum bending moment

$$\large{ P }$$ = total concentrated load

$$\large{ R }$$ = reaction load at bearing point

$$\large{ V }$$ = shear force

$$\large{ w }$$ = load per unit length

$$\large{ W }$$ = total load from a uniform distribution

$$\large{ x }$$ = horizontal distance from reaction to point on beam

$$\large{ \lambda }$$   (Greek symbol lambda) = modulus of elasticity

$$\large{ \Delta }$$ = deflection or deformation