Tapered T Beam

Written by Jerry Ratzlaff on . Posted in Structural

Tapered T Beam - Geometric PropertiesT beam tapered 1

area of a Tapered T Beam formula

\(\large{ A =  ws  +  \frac{ h \; \left(T  +  t\right) }{2}   }\)

Perimeter of a Tapered T Beam formula

\(\large{ P =  2w  +  2s \;-\; T  +  t  +  2  \sqrt{   \left( \frac{1}{2} \right)^2  +  \left( \frac{T}{2} \right)^2       }   }\)    

Distance from Centroid of a Tapered T Beam formula

\(\large{ C_x =  0  }\)

\(\large{ C_y =  l \;-\; \frac{1}{6A} \;  \left[    3ws^2  +  3ht  \; \left( l  +  s \right)  +  h \; \left( T \;-\; t \right) \; \left( h  +  3s \right)   \right]   }\)

Elastic section Modulus of a Tapered T Beam formula

\(\large{ S_{x} =  \frac { I_{x} }  { C_{y}   } }\)

Radius of Gyration of a Tapered T Beam formula

\(\large{ k_{x} =  \sqrt  {  \frac { I_x }  { A  }   }   }\)

\(\large{ k_{x1} =  \sqrt  {  \frac { I_{x1} }  { A  }   }   }\)

Second Moment of Area of a Tapered T Beam formula

\(\large{ I_{x} =   \frac  {  \left[  4ws^2  \;+\;  h^3 \;  \left( 3t \;+\; T \right)  \right]    \;-\; A \; \left( l \;-\; C_y \;-\; s \right)^2   }  {12}   }\)

\(\large{ I_{x1} =  I_{x}  +  A C_{y} }\)

 

Where:

\(\large{ A }\) = area

\(\large{ C }\) = distance from centroid

\(\large{ d }\) = distance from principle axis

\(\large{ I }\) = moment of inertia

\(\large{ J }\) = torsional constant

\(\large{ k }\) = radius of gyration

\(\large{ P }\) = perimeter

\(\large{ p }\) = principal axis

\(\large{ S }\) = elastic section modulus

 

Tags: Equations for Structural Steel