# Right Elliptic Cylinder

Written by Jerry Ratzlaff on . Posted in Solid Geometry

•  Elliptic cylinder (a three-dimensional figure) has a cylinder shape with elliptical ends.
• 2 bases

### Lateral Surface Area of a Right Elliptic Cylinder formula

Since there is no easy way to calculate the ellipse perimeter with high accuracy.  Calculating the laterial surface will be approximate also.

$$\large{ A_l \approx h \; \left( 2\;\pi \;\sqrt {\; \frac{1}{2}\; \left(a^2 + b^2 \right) } \right) }$$

Where:

$$\large{ A_l }$$ = approximate lateral surface area (side)

$$\large{ a }$$ = length semi-major axis

$$\large{ b }$$ = length semi-minor axis

$$\large{ h }$$ = height

### Surface Area of a Right Elliptic Cylinder formula

$$\large{ A_s \approx h \; \left( 2\;\pi \;\sqrt {\; \frac{1}{2}\; \left(a^2 + b^2 \right) } \right) + 2\; \left( \pi \; a \; b \right) }$$

Where:

$$\large{ A_s }$$ = approximate surface area (bottom, top, side)

$$\large{ a }$$ = length semi-major axis

$$\large{ b }$$ = length semi-minor axis

$$\large{ h }$$ = height

### Volume of a Right Elliptic Cylinder formula

$$\large{ V = \pi\; a \;b\; h }$$

Where:

$$\large{ V }$$ = volume

$$\large{ a }$$ = length semi-major axis

$$\large{ b }$$ = length semi-minor axis

$$\large{ h }$$ = height

Tags: Equations for Volume