Peclet Number

Written by Jerry Ratzlaff on . Posted in Dimensionless Numbers

P├ęclet number, abbreviated as Pe, is a dimensionless number defined as a ratio of heat transport by convection to heat transport by conduction.

Peclet Number FORMULA

\(\large{ Pe =  \frac { v \; \rho \; C  \; l_c }{ k }      }\)         

Where:

\(\large{ Pe  }\) = Peclet number

\(\large{ l_c }\) = characteristic length

\(\large{ \rho  }\)  (Greek symbol rho) = density

\(\large{ C }\) = heat capacity

\(\large{ k }\) = thermal conductivity

\(\large{ v  }\) = velocity

Solve for:

\(\large{ l_c =  \frac {Pe \;  k}{ v \; \rho \;  C }  }\)

\(\large{ \rho =  \frac {Pe \; k}{ v \; C \; l_c }   }\)

\(\large{ C =  \frac {Pe \; k}{ v \; \rho \; l_c }  }\)

\(\large{ k =  \frac { v \; \rho \; C \;  l_c }{ Pe }  }\)

\(\large{ v =  \frac {Pe \; k}{ \rho \; C \; l_c }    }\)

 

Tags: Equations for Temperature