Peclet Number

Written by Jerry Ratzlaff on . Posted in Dimensionless Numbers

P├ęclet Number is a dimensionless number defined as a ratio of a flow rate of momentum diffusivity to thermal diffusivity.

FORMULA

\(Pe =  \frac { \nu}  { \alpha }      \)

\(Pe =  \frac { v \rho c l }  { k }      \)

Where:

\(Pe  \) = Peclet Number

\(\nu  \) = kinematic viscosity

\(\alpha  \) = thermal diffusivity

\(v  \) = velocity

\(\rho  \) = density

\(c\) = heat capacity

\(l\) = characteristic length

\(k\) = thermal conductivity

Solve for:

\(v =  \frac {Pe  k} { \rho c l }    \)

\(\rho =  \frac {Pe  k} { v c l }   \)

\(c =  \frac {Pe  k} { v \rho  l }  \)

\(l =  \frac {Pe  k} { v \rho  c }  \)

\(k =  \frac { v \rho c  l } { Pe }  \)