# Pipe Sizing for Condensate Recovery

Written by Jerry Ratzlaff on . Posted in Fluid Dynamics

## Condensate Recovery Pressure Loss through piping formula

### Pressure Loss through piping formula

$$p_l = \frac { 1000 \mu \; \cdot \; l \; \cdot \; v_c{^2} } {2d \; \cdot \; V_{temp} }$$

Where:

$$p_l$$ = condensate pressure loss

$$\mu$$ (Greek symbol mu) = friction coefficient

$$l$$ = pipe length

$$v_c$$ = condensate velocity

$$d$$ = pipe inner diameter

$$V_{temp}$$ = temporary specific volume variable

### Velocity Through Piping formula

$$v_c = \frac { 1000m_c \; \cdot \; V_{temp} } { 3.6 \pi { \left( \frac {d}{2} \right) ^2 } }$$

Where:

$$v_c$$ = condensate velocity

$$m_c$$ = condensate load

$$V_{temp}$$ = temporary specific volume variable

$$\pi$$ = Pi

$$d$$ = pipe inner diameter

## Condensate Recovery Velocity through piping formula

### Pressure Loss through piping formula

$$p_l = \frac { \mu \; \cdot \; l \; \cdot \; v_s{^2} } {2d \; \cdot \; V_{temp} }$$

Where:

$$p_l$$ = steam pressure loss

$$\mu$$ (Greek symbol mu) = friction coefficient

$$l$$ = pipe length

$$v_s$$ = steam velocity

$$d$$ = pipe inner diameter

$$V_{temp}$$ = temporary specific volume variable

### pipe inner diameter formula

$$d = \sqrt { \frac { 4 } { \pi } \; \cdot \; \frac { m_c \; \cdot \; V_{temp} } {3600v_c} }$$

Where:

$$d$$ = pipe inner diameter

$$\pi$$ = Pi

$$m_c$$ = condensate load

$$V_{temp}$$ = temporary specific volume variable

$$v_c$$ = condensate velocity