Pipe Sizing for Condensate Recovery

Written by Jerry Ratzlaff on . Posted in Fluid Dynamics

Pipe Sizing by Pressure Loss

formula - Pressure Loss through piping

\(p_l =   \frac  { 1000 \mu \; \cdot \; l \; \cdot \; v_c{^2}  }  {2d  \; \cdot \;  V_{temp}  }   \)

Where:

\(p_l\) = condensate pressure loss

\(\mu\) (Greek symbol mu) = friction coefficient

\(l\) = pipe length

\(v_c\) = condensate velocity

\(d\) = pipe inner diameter

\(V_{temp}\) = temporary specific volume variable

formula - Velocity Through Piping

\(v_c = \frac {  1000m_c  \; \cdot \;   V_{temp}  }    { 3.6 \pi  { \left( \frac {d}{2} \right) ^2  }   } \)

Where:

\(v_c\) = condensate velocity

\(m_c\) = condensate load

\(V_{temp}\) = temporary specific volume variable

\(\pi\) = Pi

\(d\) = pipe inner diameter

Pipe Sizing by Velocity

formula - Pressure Loss through piping

\(p_l =   \frac  { \mu \; \cdot \; l \; \cdot \; v_s{^2} }  {2d \; \cdot \; V_{temp} }   \)

Where:

\(p_l\) = steam pressure loss

\(\mu\) (Greek symbol mu) = friction coefficient

\(l\) = pipe length

\(v_s\) = steam velocity

\(d\) = pipe inner diameter

\(V_{temp}\) = temporary specific volume variable

formula - pipe inner diameter

\(d =   \sqrt {   \frac { 4 } { \pi }   \; \cdot \;  \frac { m_c \; \cdot \; V_{temp} } {3600v_c}      } \)

Where:

\(d\) = pipe inner diameter

\(\pi\) = Pi

\(m_c\) = condensate load

\(V_{temp}\) = temporary specific volume variable

\(v_c\) = condensate velocity

 

Tags: Equations for Pipe Sizing