# Right Cylinder

- Right cylinder (a three-dimensional figure) has two circular parallel congruent bases.
- 2 bases
- See Moment of Inertia of a Cylinder

## Height of a Right Cylinder formula

\(\large{ h = \frac{V}{\pi \; r^2} }\) |

### Where:

\(\large{ h }\) = height

\(\large{ r }\) = radius

\(\large{ V }\) = volume

\(\large{ \pi }\) = Pi

## Lateral Surface Area of a Right Cylinder formula

\(\large{ A_l = 2\; \pi\; r\; h }\) |

### Where:

\(\large{ A_l }\) = lateral surface area (side)

\(\large{ r }\) = radius

\(\large{ h }\) = height

## Radius of a Right Cylinder formula

\(\large{ r = \sqrt{ \frac{V}{\pi \; h} } }\) |

### Where:

\(\large{ r }\) = radius

\(\large{ h }\) = height

\(\large{ V }\) = volume

\(\large{ \pi }\) = Pi

## Surface Area of a Right cylinder formula

\(\large{ A_s = 2\; \pi\; r\;h+2\; \pi\; r^2 }\) |

### Where:

\(\large{ A_s }\) = surface area (bottom, top, side)

\(\large{ r }\) = radius

\(\large{ h }\) = height

## Volume of a Right cylinder formula

\(\large{ V = \pi\; r^2\;h }\) |

### Where:

\(\large{ V }\) = volume

\(\large{ r }\) = radius

\(\large{ h }\) = height

Tags: Equations for Volume