Torus
Home
Mathematics
Geometry
Solid Geometry
Torus
Hole Radius of a torus formula
\( R_h \;=\; R - r \)
Symbol
English
Metric
\( R_h \) = radius of the hole
\(in\)
\( mm \)
\( r \) = radius of sphere
\(in\)
\( mm \)
\( R \) = radius of center of sphere
\(in\)
\( mm \)
Torus (a three-dimensional figure) has a shape like a donut.
Surface Area of a torus formula
\( S \;=\; 4 \cdot \pi^2 \cdot R \cdot r \)
Symbol
English
Metric
\( S \) = surface area
\( in^2 \)
\( mm^2 \)
\( \pi \) =
Pi
\(3.141 592 653 ...\)
\(3.141 592 653 ...\)
\( r \) = radius of sphere
\(in\)
\( mm \)
\( R \) = radius of center of sphere
\(in\)
\( mm \)
Volume of a torus formula
\( V \;=\; 2 \cdot \pi^2 \cdot R \cdot r^2 \)
Symbol
English
Metric
\( V \) =
volume
\( in^3 \)
\( mm^3 \)
\( \pi \) =
Pi
\(3.141 592 653 ...\)
\(3.141 592 653 ...\)
\( r \) = radius of sphere
\(in\)
\( mm \)
\( R \) = radius of center of sphere
\(in\)
\( mm \)
Similar Articles
MOD_TAGS_SIMILAR_NO_MATCHING_TAGS
Latest Articles
Pressure Drop Across a Nozzle/Orfice
Pressure Required to Overcome Mud's Gel Strength Inside the Drillstring
Pressure Required to Overcome Mud's Gel Strength in Annulus
Pressure Required to Break Circulation in Drillstring
Distance from Centroid of a Circle