Square I Beam

Written by Jerry Ratzlaff on . Posted in Structural

Square I Beam - Geometric PropertiesI beam square 1

area formula

\(\large{ A =  wl - h  \left( w - t  \right) }\)

Perimeter formula

\(\large{ P =  2  \left( 2w + l - t  \right) }\)

Distance from Centroid formula

\(\large{ C_x =  \frac { w }  { s }  }\)

\(\large{ C_y =  \frac { l }  { 2}  }\)

Elastic Section Modulus formula

\(\large{ S_{x} =  \frac { I_{x} }  { C_{y}   } }\)

\(\large{ S_{y} =  \frac { I_{y} }  { C_{x}   } }\)

Moment of Inertia about Axis formula

\(\large{ I_{x} =  \frac { wl^3 - h^3 \left( w - t  \right)  }  {12} }\)

\(\large{ I_{y} =  \frac { 2 s w^3 + h t^3 }  {12} }\)

\(\large{ I_{x1} =   l_{x} + AC_y }\)

\(\large{ I_{y1} =  l_{y} + AC_x  }\)

Polar Moment of Inertia about Axis formula

\(\large{ J_{z} =  I_{x}  +  I_{y} }\)

\(\large{ J_{z1} =  I_{x1}  +  I_{y1} }\)

Radius of Gyration about Axis formula

\(\large{ k_{x} =   \sqrt {    \frac { wl^3 - h^3 \left( w - t  \right)  }  {  12  \left [   wl - h \left( w - t  \right) \right ] }    }   }\)

\(\large{ k_{y} =   \sqrt {    \frac { 2 s w^3 + h t^3 }  {  12  \left [   wl - h \left( w - t  \right) \right ] }    }  }\)

\(\large{ k_{z} =   \sqrt {   k_{x}{^2}   +    k_{y}{^2}    } }\)

\(\large{ k_{x1} =   \sqrt {    \frac {  I_{x1}  }  { A  }    } }\)

\(\large{ k_{y1} =   \sqrt {    \frac {  I_{y1}  }  { A  }    } }\)

\(\large{ k_{z1} =   \sqrt {   k_{x1}{^2}  +  k_{y1}{^2}     }  }\)

Torsional Constant formula

\(\large{ J  =   \frac {  2wt^3 + \left( l - s  \right)  t^3  }    {  3  }  }\)

 

Where:

\(\large{ A }\) = area

\(\large{ C }\) = distance from centroid

\(\large{ I }\) = moment of inertia

\(\large{ J }\) = torsional constant

\(\large{ k }\) = radius of gyration

\(\large{ P }\) = perimeter

\(\large{ S }\) = elastic section modulus

 

Tags: Equations for Structural Steel