Volume

Written by Jerry Ratzlaff on . Posted in Geometry

volumevolume banner

Volume ( \(V\) ) is the space occupied by a mass.  Volume is a extensive variable whose values depend on the quantity of substance under study.  It is expressed in terms of length cubed, a quantity of three dimensional space occupied by gas, liquid, or solid.  Volume is a scalar quantity having direction, some of these include area, density, energy, entropy, length, mass, power, pressure, speed, temperature, and work.

volume formula

\(V = l  w  h  \)          \( volume   \;=\;   length \;\;x \;\;  width  \;\;x \;\;  height  \)

\(V = \frac { m  }  { \rho  }   \)          \( volume   \;=\;  \frac { mass  }  { density  }   \)

Where:

\(h\) = height

\(l\) = length

\(m\) = mass

\(\rho\) (Greek symbol rho) = density

\(V\) = volume

\(w\) = width

Volume Differential

Volume differential ( \(\Delta V\) ) is the difference between an expanded or reduced volume of a liquid.

Volume Differential Formula

\(\Delta V = V_f \;- \; V_i\)          \(volume \; differential   \;=\;\;    final \; volume   \;- \;   initial \; volume\)

Where:

\(\Delta V\) = volume differential

\(V_i\) = initial volume

\(V_f\) = final volume

Reduced Specific Volume

Reduced specific volume ( \(\upsilon_r\) ) (pseudo-reduced specific volume) of a fluid is ratio of the specific volume of a substance's critical pressure and temperature.

Reduced Specific Volume formula

\( \upsilon_r = \frac {\upsilon p_c}{R^*T_c} \)          \( reduced \; specific \; volume   \;=\;  \frac { specific \; volume \;\;x\;\;   critical \; pressure  } {  universal \; gas \; constant  \;\;x\;\;  critical \; temperature  } \)

Where:

\(\upsilon_r\) (Greek symbol upsilon) = reduced specific volume

\(p_c\) = critical pressure

\(R^*\) = universal gas constant

\(T_c\) = critical temperature

\(\upsilon\) (Greek symbol upsilon) = specific volume

Specific Volume

Specific volume ( \(\upsilon\) ) is the volume in a unit of mass.  Specific volume is a intensive variable whose physical quantity value does not depend on the amount of the substance for which it is measured.  Specific volume is the reciprocal of density, a substance with a higher density will have a lower specific volume.

Specific Volume formula

\(\upsilon = \frac{V}{m} \)          \( specific \; volume  \;=\;  \frac{ volume } { mass } \)

\(\upsilon = \frac{1}{\rho} \)          \( specific \; volume  \;=\;    \frac{1}   { density } \)

Where:

\(\upsilon\) (Greek symbol upsilon) = specific volume

\(m\) = mass

\(\rho\) (Greek symbol rho) = density

\(V\) = volume

Solve for:

\(\rho = \frac{1}{\upsilon}\;\)

 

Tags: Equations for Volume