Area Cross-section

Written by Jerry Ratzlaff on . Posted in Solid Geometry

area cross section cube 1area cross section pipe 1Area cross-section, abbreviated as \(A_c\), is a two-dimension plane slice of a three-dimension plane.

 

Area Cross-section formulas

\(\large{ A_c = \frac{ Q }{ k \; i }   }\)   
\(\large{ A_c =  r_h \; P_w  }\)   
\(\large{ A_c =  z \; h^2  }\)   
\(\large{ A_c =  h_m \; T  }\)  
\(\large{ A_c =  \frac  { r^2 \;\left( \theta \;-\; sin \; \theta  \right)  }  { 2 }   }\) (Hydraulic Radius of a Partially Full Pipe (Less than Half Full))
\(\large{ A_c =  \pi \; r^2 - \frac  { r^2 \left( \theta \;-\; sin \; \theta  \right)  }  { 2 }   }\) (Hydraulic Radius of a Partially Full Pipe (More than Half Full))

Where:

\(\large{ A_c }\) = area cross-section

\(\large{ \theta }\)   (Greek symbol theta) = degree

\(\large{ h }\) = depth of fluid

\(\large{ Q }\) = flow rate

\(\large{ k }\) = hydraulic conductivity

\(\large{ i }\) = hydraulic gradient

\(\large{ r_h }\) = hydraulic radius

\(\large{ h_m }\) = mean depth

\(\large{ p }\) = pressure

\(\large{ r }\) = radius

\(\large{ T }\) = top of water surface width

\(\large{ P_w }\) = wetted perimeter

\(\large{ z }\) = width of channel slope