Cauchy Number

Written by Jerry Ratzlaff on . Posted in Dimensionless Numbers

Cauchy Number

Cauchy number ( \(Ca\) ) (dimensionless number) is expressing the ratio of inertial force to compressibility force in a flow.

Cauchy Number FORMULA

\(Ca =  \frac {v^2   \rho  }  { B }      \)          \( Cauchy \; number   \;=\;    \frac { flow \; velocity^2  \;\;x\;\;   density  }  { bulk \; modulus \; elasticity }      \)

Where:

\(Ca  \) = Cauchy number

\(B\) = bulk modulus elasticity

\(\rho  \) (Greek symbol rho) = density

\(v  \) = flow velocity

Solve for:

\(B =  \frac {v^2  \rho}  { Ca }  \)

\(\rho =  \frac {Ca  B}  { v^2  }    \)

\(v =  \sqrt { \frac {Ca   B}{\rho}  }  \)

Cauchy Number CALCULATOR

 

 

Tags: Equations for Force