Cavitation Number

Written by Jerry Ratzlaff on . Posted in Dimensionless Numbers

Cavitation number is a dimensionless number that expresses the relationship between the difference of a local absolute pressure from the vapor pressure and the kinetic energy per volume.

FORMULA

\(Ca = \frac { 2 \left(p \;-\;p_v \right)   } {\rho v^2}\) 

Where:

\(Ca\) = Cavitation number

\(p\) = local pressure

\(p_v\) = fluid vapor pressure

\(\rho\) = fluid density

\(v\) = flow characteristic velocity

Solve for:

\(p =  \frac {Ca \rho v^2} {2}  \;+\; p_v   \)

\(p_v =  p  \;-\;  \frac {Ca \rho v^2} {2}  \)

\(\rho =  \frac { 2 \left (p \;-\;p_v \right)}  {Ca v^2}  \)

\(v =  \sqrt {      \frac { 2 \left (p \;-\;p_v \right)}  {Ca v^2}      } \)