Cavitation Number
Cavitation Number
Cavitation number ( \(Ca\) ) (dimensionless number) expresses the relationship between the difference of a local absolute pressure from the vapor pressure and the kinetic energy per volume.
Cavitation Number FORMULA
\(Ca = \frac { 2 \left(p \;-\;p_v \right) } {\rho v^2}\) \( Cavitation \; number \;=\; \frac { 2 \; \left( \; local \; pressure \;-\; vapor \; pressure \; \right) } { density \;\;x\;\; characteristic \; velocity^2 }\)
\(Ca = \frac { \left(p \;-\;p_v \right) } { \frac {1}{2} \rho v^2}\) \( Cavitation \; number \;=\; \frac { \left( \; pressure \; local \;-\; fluid \; vapor \; pressure \; \right) } { \frac {1}{2} \;\;x\;\; fluid \; density \;\;x\;\; velocity^2 }\)
Where:
\(Ca\) = Cavitation number
\(p\) = local pressure
\(p_v\) = fluid vapor pressure
\(\rho\) (Greek symbol rho) = fluid density
\(v\) = flow characteristic velocity
Solve for:
\(p = \frac {Ca \rho v^2} {2} \;+\; p_v \)
\(p_v = p \;-\; \frac {Ca \rho v^2} {2} \)
\(\rho = \frac { 2 \left (p \;-\;p_v \right)} {Ca v^2} \)
\(v = \sqrt { \frac { 2 \left (p \;-\;p_v \right)} {Ca v^2} } \)