Kinetic Energy

Written by Jerry Ratzlaff on . Posted in Fluid Dynamics

Kinetic Energy

Kinetic energy is the energy in moving objects or mass.  If it moves, it has kinetic energy.

Kinetic Energy formula

\(\large{ KE = \frac {1}{2} m v^2 }\)         

\(\large{ KE = \frac {P^2}{2m}   }\)         

Where:

\(\large{ KE }\) = kinetic energy

\(\large{ m }\) = mass

\(\large{ v }\) = velocity

\(\large{ P }\) = power

Solve for:

\(\large{ m = \frac {2   KE}{v^2} }\)

\(\large{ v = \sqrt {   \frac {2   KE}{m} }  }\)

Rotational Kinetic Energy

Rotational Kinetic Energy formula

\(\large{ KE_r = \frac {1}{2} I \omega^2 }\)         

Where:

\(\large{ KE_r }\) = rotational kinetic energy

\(\large{ I }\) = moment of inertia

\(\large{ \omega }\)  (Greek symbol omega) = angular velocity

 

 

 

Tags: Equations for Energy