Angular Acceleration

Written by Jerry Ratzlaff on . Posted in Classical Mechanics

Angular Acceleration

Angular acceleration ( \(\alpha\) (Greek symbol alpha) ) (also called rotational acceleration) of an object is the rate at which the angle velocity changes with respect to time.

Angular Acceleration Formula

\(\large{ \alpha = \frac { d \omega } { d t }   }\)         

\(\large{ \alpha = \frac { \omega_f  -  \omega_i  } { t_f - t_i }   }\)                   

\(\large{ \alpha = \frac { d^2 \theta } { d t^2 }   }\)                

\(\large{ \alpha = \frac { a_t } { r }   }\)             

\(\large{ \alpha = \frac { \tau } { I }   }\)         

Where:

\(\large{ \alpha }\) (Greek symbol alpha) = angular acceleration

\(\large{ a_t }\) = lineat tangential path

\(\large{ \theta }\)  (Greek symbol theta) = angular rotation

\(\large{ r }\) = radius of circular path

\(\large{ t }\) = time taken

\(\large{ t_f }\) = final time taken

\(\large{ t_i }\) = initial time taken

\(\large{ \tau }\)  (Greek symbol tau) = torque

\(\large{ I }\) = mass moment of inertia or angular mass

\(\large{ \omega }\)  (Greek symbol omega) = angular velocity

\(\large{ \omega _f }\)  (Greek symbol omega) = final angular velocity

\(\large{ \omega _i }\)  (Greek symbol omega) = initial angular velocity

 

Tags: Equations for Acceleration