Cavitation Number

Written by Jerry Ratzlaff on . Posted in Dimensionless Numbers

Cavitation number, abbreviated Ca, a dimensionless number, expresses the relationship between the difference of a local absolute pressure from the vapor pressure and the kinetic energy per volume.

 

Cavitation number formulas

\(\large{ Ca = \frac { 2\; \left(p \;-\;p_v \right)   } {\rho\; U^2}  }\) 

\(\large{Ca = \frac { \left(p \;-\;p_v \right)   } { \frac {1}{2} \; \rho\; U^2}  }\)  

Symbol English Metric
\(\large{ Ca }\) = Cavitation number \(\large{ dimensionless }\)
\(\large{ U }\) = characteristic velocity of flow \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)
\(\large{ \rho }\)  (Greek symbol rho) = density of fluid \(\large{\frac{lb}{ft^3}}\) \(\large{\frac{kg}{m^3}}\)
\(\large{ p }\) = local pressure \(\large{\frac{lbf}{in^2}}\)  \(\large{Pa}\)
\(\large{ p_v }\) = vapor pressure \(\large{\frac{lbf}{in^2}}\) \(\large{Pa}\)

 

Cavitation Number Calculator

 

 

P D Logo 1 

Tags: Pressure Equations Pump Equations Calculators