Overhanging Beam - Point Load on Beam End

Overhanging Beam - Point Load on Beam End formulas

R_1 \;=\; V_1 \;=\;  \dfrac{ P\cdot a}{L } 

R_2 \;=\; V_1 + V_2 \;=\;  \dfrac{ P }{L}  \cdot ( L + a )  

V_2  \;=\;   P    

M_{max}  \; ( at \;R_2 )  \;=\;  P\cdot a  

M_x  \; (between\; supports )  \;=\;  \dfrac{ P\cdot a\cdot x}{L } 

M_{x_1}  \; (for \;overhang ) \;=\;   P\cdot ( a - x_1 ) 

\Delta_x  \; (between\; supports )  \;=\;   \dfrac{ - \;(P \cdot a\cdot x)  }{ 6\cdot \lambda \cdot I\cdot L }  \cdot ( L^2 - x^2 ) 

\Delta_{x_1}  \; (overhang ) \;\;=\;\;     \dfrac{ P\cdot x_1 }{ 6\cdot \lambda\cdot I }  \cdot  ( 2\cdot a\cdot L + 3\cdot a\cdot x_1 - x_{1}{^2} )  

\Delta_{max}  \; ( for\;overhang\; at\;  x_1 = a )   \;=\;   \dfrac{ P\cdot a^2 }{ 3 \cdot \lambda \cdot I } \cdot  ( L + a ) 

\Delta_{max}  \;  ( between\; supports\; at \;x = \frac{L}{\sqrt{3}}  )    \;=\;   \frac{ -(P\;a\;L^2) }{9\; \sqrt{3} \; \lambda\; I }  \;\;=\;\;   0.06415 \cdot  \dfrac{ P\cdot a\cdot L^2 }{ \lambda\cdot I } 

Symbol English Metric
\Delta = deflection or deformation in mm
x = horizontal distance from reaction to point on beam in mm
M = maximum bending moment lbf-in N-mm
V = maximum shear force lbf N
\lambda    (Greek symbol lambda) = modulus of elasticity lbf\;/\;in^2 Pa
R = reaction load at bearing point lbf N
I = second moment of area (moment of inertia) in^4 mm^4
L = span length of the bending member in mm
P = total concentrated load lbf N

ob 5A 1 

 

 

 

 

 

 

 

 

 

Diagram Symbols

Bending moment diagram (BMD)  -  Used to determine the bending moment at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
Free body diagram (FBD)  -  Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
Shear force diagram (SFD)  -  Used to determine the shear force at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
Uniformly distributed load (UDL)  -  A load that is distributed evenly across the entire length of the support area.

Piping Designer Logo Slide 1