Overhanging Beam - Point Load on Beam End formulas |
||
R_1 \;=\; V_1 \;=\; \dfrac{ P\cdot a}{L } R_2 \;=\; V_1 + V_2 \;=\; \dfrac{ P }{L} \cdot ( L + a ) V_2 \;=\; P M_{max} \; ( at \;R_2 ) \;=\; P\cdot a M_x \; (between\; supports ) \;=\; \dfrac{ P\cdot a\cdot x}{L } M_{x_1} \; (for \;overhang ) \;=\; P\cdot ( a - x_1 ) \Delta_x \; (between\; supports ) \;=\; \dfrac{ - \;(P \cdot a\cdot x) }{ 6\cdot \lambda \cdot I\cdot L } \cdot ( L^2 - x^2 ) \Delta_{x_1} \; (overhang ) \;\;=\;\; \dfrac{ P\cdot x_1 }{ 6\cdot \lambda\cdot I } \cdot ( 2\cdot a\cdot L + 3\cdot a\cdot x_1 - x_{1}{^2} ) \Delta_{max} \; ( for\;overhang\; at\; x_1 = a ) \;=\; \dfrac{ P\cdot a^2 }{ 3 \cdot \lambda \cdot I } \cdot ( L + a ) \Delta_{max} \; ( between\; supports\; at \;x = \frac{L}{\sqrt{3}} ) \;=\; \frac{ -(P\;a\;L^2) }{9\; \sqrt{3} \; \lambda\; I } \;\;=\;\; 0.06415 \cdot \dfrac{ P\cdot a\cdot L^2 }{ \lambda\cdot I } |
||
Symbol | English | Metric |
\Delta = deflection or deformation | in | mm |
x = horizontal distance from reaction to point on beam | in | mm |
M = maximum bending moment | lbf-in | N-mm |
V = maximum shear force | lbf | N |
\lambda (Greek symbol lambda) = modulus of elasticity | lbf\;/\;in^2 | Pa |
R = reaction load at bearing point | lbf | N |
I = second moment of area (moment of inertia) | in^4 | mm^4 |
L = span length of the bending member | in | mm |
P = total concentrated load | lbf | N |
Diagram Symbols
Bending moment diagram (BMD) - Used to determine the bending moment at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
Free body diagram (FBD) - Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
Shear force diagram (SFD) - Used to determine the shear force at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
Uniformly distributed load (UDL) - A load that is distributed evenly across the entire length of the support area.