Formula Symbols - M

Written by Jerry Ratzlaff on . Posted in Nomenclature & Symbols for Engineering, Mathematics, and Science

For other symbols see:  A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

See Dimensionless Numbers, General Constants

SymbolGreek SymbolDefinitionUSMetric
\(m_e\) - electron (rest) \(lbm\) \(kg\)
\(Ma\) - Mach number dimensionless number dimensionless number
\(\Sigma\) Sigma macroscopic cross section - -
\(\mu_o\) mu magnetic constant - \(Tm \;/\; A\)
\(M \;or\; m_i\) - magnetic - -
\(B\) - magnetic field - -
\(n_m \;or\; \nu_m\) nu magnetic diffusivity - -
\(m \;or\; \mu\) mu magnetic dipole moment - -
\(H \;or\; \vec{H}\) - magnetic field - -
\(\phi_m\) phi magnetic flux \(T\) \(T\)
\(B\) - magnetic flux density - \(T\)
\(\Phi_o\) Phi magnetic flux quantum constant constant
\(F_m\) - magnetic force \(lbf\) \(N \;/\; a-m\)
\(B \;or\; \vec{B}\) - magnetic induction - -
\(\mu\) mu magnetic moment of a particle - -
\(\mu\) mu magnetic permeability - -
\(U_m\) - magnetic potential difference - -
\(p_m\) - magnetic pressure - -
\(\beta\) beta magnetic pressure ratio - -
\(X\) - magnetic susceptibility - -
\(A\) - magnetic vector potential - -
\(F_m\) - magnetomotive force - -
\(M\) - magnetization - -
\(M\) - magnification - -
\(MF\)   magnification factor - -
\(V\) - Manning formula \(ft\;/\;sec\) \(m\;/\;s\)
\(n\) - Manning roughness coefficient - -
\( Ma\) - Marangoni number dimensionless number dimensionless number
\(m\) - mass \(lbm\) \(kg\)
\(\mu_m\) mu mass attenuation coefficient - -
\(\dot {m}_c\) - mass condensation rate \(lbm\;/\;hr\) \(kg\;/\;s\)
\(c\) - mass consentration \(lbm\) \(kg\)
\(\rho \) rho mass density \(lb\;/\;ft^3\) \(kg\;/\;m^3\)
\(D_m\) - mass diffusivity \(ft^2/sec\) \(m^2\;/\;s\)
\(\Delta\) Delta mass excess - -
\(\dot {m}_f\) - mass flow rate \(lbm\;/\;sec\) \(kg\;/\;s\)
\(B \;or\; \Gamma\) Gamma mass flow rate per unit area \(lbm\;/\;hr-ft^2\) \(kg\;/\;s-m^2\)
\(w\) - mass fraction - -
\(m \;or\; \dot {m}\) - mass leak rate \(lbm\;/\;sec\) \(kg\;/\;s\)
\(I\) - mass moments of inertia \(lbm-ft^2\) \(kg-m^2\)
\(A\) - mass number - -
\(\mu\) mu mass of molecule - -
\(K \;or\; k\) - mass transfer coefficient \(ft/sec\) \(m/s\)
\(\dot {m}_t\) - mass transfer rate \(lbm\;/\;sec\) \(kg\;/\;s\)
\(G\) - mass velocity \(lbm\;/\;sec\) \(kg\;/\;s\)
\(J\) - Massieu function - -
\(D\) - material density \(g \;/\; cm^3\) \(kg \;/\; m^3\)
\(K_{cE}\) - material factor for wood column design - -
\(M\) - maximum bending moment \(lbf-in\) \(N-mm\)
\(\Delta_{max}\) Delta maximum calculated beam deflection \(in\) \(mm\)
\(M_u\) - maximum moment from factored loads for LRFD beam design \(lbf-ft\) \(N-m\)
\(H_{sp}\) - maximum surge pressure head in a length of pipe \(lb\;/\;ft^2 \;or\; psi\) \(Pa\)
\(P_{spf}\) - maximum surge pressure for a fluid \(lb\;/\;ft^2 \;or\; psi\) \(Pa\)
\(L_c\) - maximum unbraced length of a steel beam in ASD design for max. allowed bending stress \(in \;or\; ft\) \(mm \;or\;m\)
\(L_p\) - maximum unbraced length of a steel beam in LRFD design for full plastic flexural strength \(in \;or\; ft\) \(mm \;or\;m\)
\(L_r\) - maximum unbraced length of a steel beam in LRFD design for inelastic strength \(in \;or\; ft\) \(mm \;or\;m\)
\(L_u\) - maximum unbraced length of a steel beam in ASD design for reduced allowed bending stress \(in \;or\; ft\) \(mm \;or\; m\)
\(m\) - mean - -
\(h_m\) - mean depth \(ft\) \(m\)
\(l \;or\; \lambda\) lambda mean free path \(ft\) \(m\)
\(\tau \;or\; \tau_m\) tau mean life - -
\(v_m\) - mean velocity \(ft\;/\;sec\) \(m\;/\;s\)
\(h\) - mean water depth \(ft\) \(m\)
\(ME\) - mechanical efficiency - -
\(ME\) - mechanical energy \(ft-lbf\) \(J\)
\(W\) - mechanical work - \(J\)
\(\rho_m\) rho media density \(lb\;/\;ft^3\) \(kg\;/\;m^3\)
\(Z_w\) - metal removal rate \(ft^3\;/\;min\) \(m_3\;/\;s\)
\(I_{min}\) - minimum moment of inertia of \(I_x\) and \(I_y\) \(in \;or\; ft\) \(mm \;or\; m\)
\(K\) - minor loss coefficient - -
\(K\) - mixing factor - -
\(\mu \;or\; \mu_n \;or\; \mu_p\) mu mobility - -
\(b\) - mobility ratio - -
\(C_m\) - modification factor for combined stress in steel design - -
\(\lambda\) lambda modulus of elasticity \(lb\;/\;ft^2 \;or\; psi\) \(Pa\)
\(E\) - modulus of elasticity earthquake load for LRFD design \(psi\) \(kPa\)
\(U_r\) - modulus of resilience \(lbf\;/\;in^2\) \(MPa\)
\(G \;or\; \mu\) mu modulus of rigidity \(lb\;/\;in^2\) \(N\;/\;m^2\)
\(U_t\) - modulus of toughness \(lbf\;/\;in^2\) \(MPa\)
\(n\) - modular ratio - -
\(m\) - module - \(mm\)
\(MC\) - moisture content - -
\(m\) - molality - \(mol\;/\;1000g\)
\(M\) - molar concentration \(lbmol\;/\;ft^3\) \(kmol\;/\;m^3\)
\(H\) - molar enthalpy \(Btu\;/\;lbmol\) \(kJ\;/\;kmol \)
\(S\) - molar entropy \(Btu\;/\;lbmol-^\circ R\) \(kJ\;/\;kmol-K\)
\(x\) - molar fraction - -
\(M\) - molar gas \(lb \;/\; mol\) \(kg \;/\; mol\)
\( R\) - molar gas constant - \(JK^{-1} mol^{-1}\)
\(c_m\) - molar heat \(lb\;/\;mol\) \(kg\;/\;mol\)
\(U\) - molar internal energy \(Btu\;/\;lbmol\) \(kJ\;/\;kmol\)
\(M\) - molar mass of gas - -
\(M\) - molar mass \(lb\;/\;mol\) \(kg\;/\;mol\)
\(r\) - molar ratio of solution - -
\(C\) - molar specific heat

\(Btu\;/\;lbmol-^\circ F\)

\(kJ\;/\;kmol-K\)
\(V\) - molar specific volume \(ft^3\;/\;lbmol\) \(m^3\;/\;kmol\)
\(V_m\) - molar volume \(ft^3\;/\;mol\) \(m^3\;/\;mol\)
\(M\) - molarity - \(mol\;/\;l\)
\(m\) - molarity of solution - -
\(n\) - mole - -
\(\chi \) chi mole fraction \(mol\) \(mol\)
\(MW\) - molecular weight \(lbm\;/\;lbmol\) \(kg\;/\;kmol\)
\(M\) - moment \(lbf \;/\; sec\) \(kg-m \;/\; s\)
\(M\) - moment of force \(lbf-ft\) \(N-m\)
\(I \;or\; J\) - moment of inertia \(lbm-ft2\) \(kg-m^2\)
\(M\) - moment of mass \(lbf\) \(kg-m\)
\(I_c \;or\;  \overline{I}\) - moment of inertia about the centroid \(in^4\) \(mm^4\)
\(I_x\) - moment of inertia with respect to an x-axis \(in^4\) \(mm^4\)
\(I_y\) - moment of inertia with respect to an y-axis \(in^4\) \(mm^4\)
\(p \;or\; \rho\) rho momentum \(lbm-ft\;/\;sec\) \(kg-m\;/\;s\)
\(Mo\) - Morton number dimensionless number dimensionless number
\(M\) - mutual inductance - -