Venturi Tube Flow Rate

Written by Jerry Ratzlaff on . Posted in Fluid Dynamics

Venturi Tube Flow Rate

Venturi Tube Flow Rate Formula

\(Q = C_v A \sqrt {2 \cdot g \cdot \Delta h}  \)          \( volumetric \; flow \; rate   \;=\;   flow \; coefficient  \;\;x\;\;  cross \; section \; area  \;  \sqrt { \; 2  \;\;x\;\; gravitational \; acceleration  \;\;x\;\;   head \; loss  }   \)

\(Q = C_v A \sqrt {  \frac { 2 \Delta P} {\rho}  }  \)          \( volumetric \; flow \; rate   \;=\;   flow \; coefficient  \;\;x\;\;  cross \; section \; area  \;  \sqrt { \;  \frac  {  \; 2  \;\;x\;\; pressure \; loss }  {  density }      }   \)

Where:

\(Q\) = volumetric flow rate / flow rate

\(C_v\) = flow coefficient

\(A\) = cross section area

\(\Delta P\) = pressure loss

\(\rho\) (Greek symbol rho) = density

\(g\) = gravitational acceleration

\(\Delta h\) = head loss

 

Tags: Equations for Flow Rate