Kinematic Viscosity

Written by Jerry Ratzlaff on . Posted in Classical Mechanics

Kinematic viscosity, abbreviated as \(\nu \) (Greek symbol nu), is the ratio of dynamic viscosity to density or the resistive flow of a fluid under the influance of gravity.    

 

Kinematic viscosity formula

\(\large{ \nu = \frac{\mu}{\rho}  }\)  

\(\large{ \nu =  Pr  \;  \alpha  }\) 

\(\large{ \nu =  Sc \; D_m  }\)

Symbol English Metric
\(\large{ \nu }\)  (Greek symbol nu) = kinematic viscosity \(\large{\frac{ft^2}{sec}}\) \(\large{\frac{m^2}{s}}\)
\(\large{ \rho }\)  (Greek symbol rho) = density \(\large{\frac{lbm}{ft^3}}\) \(\large{\frac{kg}{m^3}}\)
\(\large{ \mu }\)  (Greek symbol mu) = dynamic viscosity \(\large{\frac{lbf-sec}{ft^2}}\) \(\large{ Pa-s }\)
\(\large{ D_m }\) = mass diffusivity \(\large{\frac{ft^3}{sec}}\) \(\large{\frac{m^3}{s}}\)
\(\large{ Pr }\) = Prandtl number \(\large{ dimensionless }\)
\(\large{ Sc }\) = Schmidt number \(\large{ dimensionless }\)
\(\large{ \alpha }\)  (Greek symbol alpha) = thermal diffusivity \(\large{\frac{ft^2}{sec}}\) \(\large{\frac{m^2}{s}}\)

 

Piping Designer Logo Slide 1

Tags: Viscosity Equations