Schmidt Number

Written by Jerry Ratzlaff on . Posted in Dimensionless Numbers

Schmidt number, abbreviated as Sc, a dimensionless number, in fluid mechanics used in analyzing fluid flows where there is an interface between two different fluids. 

 

Schmidt Number formulas

\(\large{ Sc =   \frac{ \nu }{ D_m }  }\)

\(\large{ Sc =   \frac{  \mu }{ \rho \; D_m  }    }\)

Symbol English Metric
\(\large{ Sc }\) = Schmidt number \(\large{dimensionless}\)
\(\large{ \rho }\)  (Greek symbol rho) = density \(\large{\frac{lbm}{ft^3}}\) \(\large{\frac{kg}{m^3}}\)
\(\large{ \mu }\)  (Greek symbol mu) = dynamic viscosity \(\large{\frac{lbf-sec}{ft^2}}\) \(\large{ Pa-s }\)
\(\large{ \nu }\)  (Greek symbol nu) = kinematic viscosity \(\large{\frac{ft^2}{sec}}\) \(\large{\frac{m^2}{s}}\)
\(\large{ D_m }\) = mass diffusivity \(\large{\frac{ft^2}{sec}}\) \(\large{\frac{m^2}{s}}\)

 

P D Logo 1 

Tags: Flow Equations