Thermal Diffusivity
Thermal diffusivity, abbreviated as \(\alpha\) (Greek symbol alpha), is a measure of the transient thermal reaction of a material to a change in temperature.
Thermal diffusivity formula
\(\large{ \alpha = \frac{ k }{ \rho \; Q } }\) |
Where:
Units | English | Metric |
\(\large{ \alpha }\) (Greek symbol alpha) = thermal diffusivity | \(\large{\frac{ft^2}{sec}}\) | \(\large{\frac{m^2}{s}}\) |
\(\large{ \rho }\) (Greek symbol rho) = density | \(\large{\frac{lbm}{ft^3}}\) | \(\large{\frac{kg}{m^3}}\) |
\(\large{ Q }\) = specific heat capacity | \(\large{\frac{Btu}{lbm-F}}\) | \(\large{\frac{kJ}{kg-K}}\) |
\(\large{ k }\) = thermal conductivity | \(\large{\frac{Btu}{hr-ft^2-F}}\) | \(\large{\frac{W}{m-K}}\) |
Related Thermal Diffusivity formulas
\(\large{ \alpha = \frac{ Fo \; l_c^2 }{ t } }\) | (Fourier number) |
\(\large{ \alpha = Le \; D_m }\) | (Lewis number) |
\(\large{ \alpha = \frac{ \nu }{ Pr } }\) | (Prandtl number) |
Where:
\(\large{ \alpha }\) (Greek symbol alpha) = thermal diffusivity
\(\large{ l_c }\) = characteristic length
\(\large{ Fo }\) = Fourier number
\(\large{ \nu }\) (Greek symbol nu) = kinematic viscosity
\(\large{ Le }\) = Lewis number
\(\large{ D_m }\) = mass diffusivity
\(\large{ Pr }\) = Prandtl number
\(\large{ t }\) = time
Tags: Equations for Thermal Equations for Heat Equations for Diffusion