# Kinematic Viscosity

Written by Jerry Ratzlaff on . Posted in Classical Mechanics

Kinematic viscosity, abbreviated as $$\nu$$ (Greek symbol nu), is the ratio of dynamic viscosity to density or the resistive flow of a fluid under the influance of gravity.

## Kinematic viscosity formula

 $$\large{ \nu = \frac{\mu}{\rho} }$$

### Where:

 Units English Metric $$\large{ \nu }$$  (Greek symbol nu) = kinematic viscosity $$\large{\frac{ft^2}{sec}}$$ $$\large{\frac{m^2}{s}}$$ $$\large{ \rho }$$  (Greek symbol rho) = density $$\large{\frac{lbm}{ft^3}}$$ $$\large{\frac{kg}{m^3}}$$ $$\large{ \mu }$$  (Greek symbol mu) = dynamic viscosity $$\large{\frac{lbf-sec}{ft^2}}$$ $$\large{ Pa-s }$$

## Related Kinematic Viscosity formulas

 $$\large{ \nu = Pr \; \alpha }$$ (Prandtl number) $$\large{ \nu = Sc \; D_m }$$ (Schmidt number)

### Where:

$$\large{ \nu }$$  (Greek symbol nu) = kinematic viscosity

$$\large{ D_m }$$ = mass diffusivity

$$\large{ Pr }$$ = Prandtl number

$$\large{ Sc }$$ = Schmidt number

$$\large{ \alpha }$$  (Greek symbol alpha) = thermal diffusivity Tags: Viscosity Equations