Formula Symbols - T

Written by Jerry Ratzlaff on . Posted in Nomenclature & Symbols for Engineering, Mathematics, and Science

For other symbols see:  A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

SymbolGreek SymbolDefinitionUSMetric
\(v_t\) - tangential velocity \(rad/s\) \(rad/s\)
\(Ta\) - Taylor number dimensionless number dimensionless number
\( T\) - temperature \(^\circ F\) \(^\circ C\)
\(\Delta T\) Delta temperature differential \(^\circ F\) \(^\circ C\)
\(T_d\) - temperature differential \(^\circ F\) \(^\circ C\)
\(T\) - tension \(lbf\) \(N\)
\(F_t\) - tension force - -
\(v_t\) - terminal velocity - -
\(C_t\) - thermal capacitance \(Btu/^oF\) \(J/K\)
\( Q\) - thermal conduction - -
\( k\) - thermal conductivity \(Btu-ft/hr-ft^2-^\circ F\) \(W/m\cdot K\)
\(\lambda\) lambda thermal conductivity \(Btu-ft/hr-ft^2-^\circ F\) \(W/m\cdot K\)
\(\lambda\) lambda thermal conductivity coefficient \(Btu-ft/hr-ft^2-^\circ F\) \(W/m\cdot K\)
\( k_t\) - thermal conductivity constant - -
\( \alpha\) alpha thermal diffusivity \(ft^2/sec\) \(m^2 /s\)
\( Q\) - thermal energy - -
\( \alpha\) alpha thermal expansion coefficient - \(K_{-1}\)
\(R_t\) - thermal resistance \(hr-^\circ F/Btu\) \(K/W\)
\(t\) - thickness \( in\;\) or\(\; ft\) \(m\)
\(F\) - thrust \(lbf\) \(N\)
\(F\) - thrust force \(lbf\) \(N\)
\( t\) - time \(hr\) \(s\)
\(\tau\) tau time constant \(m\) \(s\)
\(\Delta t\) Delta time differential \(hr\) \(s\)
\(t_d\) - time differential \(hr\) \(s\)
\(t_f\) - time of flight \(hr\) \(s\)
\( T\) - torque \(in-lbf\) \(N\cdot m\)
\(K\) Kappa torsion coefficient - \(N \cdot m/rad\)
\(h_t\) - total head \(ft\) \(m\)
\(q_t\)   total heat \(Btu\) \(kJ\)
\(p_t\) - total pressure \(in\; wg\) \(Pa\)
\(TDH\) - total dissolved head \(ft\) \(m\)
\(TDS\) - total dissolved solids \(ppm\) \(mg/L\)
\( W_t\) - total work \(ft-lbf\) \(kW\)
\(\dot {t}\) - transfer rate - -
\(TU\) - transfer units - -
\(\tau\) tau transmittance - -
\(T\) - transmitted torque \(ft-lbf\) \(N \cdot m\)
\(Pr_t\) - Turbulent Prandtl number dimensionless number dimensionless number