Formula Symbols - T

Written by Jerry Ratzlaff on . Posted in Nomenclature & Symbols for Engineering, Mathematics, and Science

For other symbols see:  A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

SymbolGreek SymbolDefinitionUSMetric
\(a_t\) - tangential acceleration \(ft\;/\;sec^2\) \(m\;/\;s^2\)
\(F_t\) - tangential force \(ft\;/\;sec^2\) \(m\;/\;s^2\)
\(v_t\) - tangential velocity \(deg\;/\;sec\) \(rad\;/\;s\)
\(Ta\) - Taylor number dimensionless number dimensionless number
\(T\) - temperature \(^\circ F\) \(C\)
\(\alpha \;or\; \beta\) alpha , beta temperature coefficient \(1 \;/\; ^\circ R\) \(1 \;/\; K\)
\(y\) - temperature derating factor - -
\(T_d \;or\; \Delta T\) Delta temperature differential \(^\circ F\) \(C\)
\(\nabla T\) nabla temperature gradient - \(Km^{-1}\)
\(T\) - temperature of an ideal gas \(^\circ F\) \(C\)
\(T\) - tensile force \(lb \;or\; kip\) \(N \;or\; kN\)
\(s\) - tensile strength \(psi\) \(kg\;/\;cm^2\)
\(\sigma\) sigma tensile stress - -
\(T\) - tension \(lbf\) \(N\)
\(F_t \) - tension force - -
\(v_t\) - terminal velocity - -
\(C_t\) - thermal capacitance \(Btu\;/\; ^\circ F\) \(J\;/\; K\)
\(C\) - thermal conductance of air space \(Btu\;/\;ft^2-hr - ^\circ F\) \(W\;/\;m^2 - C\)
\(Q\) - thermal conduction - -
\(p\) - thermal conduction rate - -
\(K \;or\; k\) - thermal conductivity \(Btu\;/\;hr-ft^2- ^\circ F\) \(W\;/\;m^2 - K\)
\(\lambda\) lambda thermal conductivity coefficient \(Btu-ft\;/\;hr-ft^2-^\circ F\) \(W\;/\;m - C\)
\(k_t\) - thermal conductivity constant \(Btu\;/\;hr-ft^2- ^\circ F\) \(W\;/\;m^2 - K\)
\(\lambda_{ik}\) lambda thermal conductivity tensor - -
\(p\) - thermal current - -
\(D_{td}\) - thermal diffusion coefficient - -
\(\alpha_t\) alpha thermal diffusion factor - -
\(k_t\) - thermal diffusion ratio - -
\(\alpha\) alpha thermal diffusivity \(ft^2\;/\;sec\) \(m^2 \;/\;s\)
\( Q\) - thermal energy \(Btu\) \(W\)
\( \alpha_c\) alpha thermal expansion coefficient \(1 \;/\; ^\circ K\) \(1 \;/\; ^\circ K\)
\(l\) - thermal intensity - \(Wm^{-2}\)
\(p\) - thermal power transfer - -
\(R_t\) - thermal resistance \(hr-^\circ F\;/\;Btu\) \(K\;/\;W\)
\(\epsilon_t\) epsilon thermal strain - -
\(\sigma_T\) sigma thermal stress - -
\(\tau\) tau thermal time constant \(hr\) \(s\)
\(T \;or\; \tau\) tau thermodynamic temperature - -
\(d \;or\; t \;or\; \delta\) delta thickness \( in \;or\; ft\) \(mm \;or\; m\)
\(t_f\) - thickness of the flange of a steel beam cross section \(in\) \(mm\)
\(t_w\) - thickness of the web of a steel beam cross section \(in\) \(mm\)
\(\mu\) mu Thomson coefficient - -
\(\sigma_e\) sigma Thomson cross section - -
\(T\) - throat size of a weld \(in\) \(mm\)
\(F\) - thrust \(lbf\) \(N\)
\(F\) - thrust force \(lbf\) \(N\)
\( t\) - time \(sec\) \(s\)
\(\tau\) tau time constant \(sec\) \(s\)
\(dt \;or\; \Delta t\) Delta time differential \(sec\) \(s\)
\(t_f\) - time of flight \(sec\) \(s\)
\(T \;or\; \tau\) tau torque \(lbf-ft\) \(N-m\)
\(T_s\) - torque speed \(lbf-ft \;/\; sec\) \(N-m \;/\; s\)
\(K\) Kappa torsion coefficient - \(N-m\;/\;rad\)
\(J\) - torsional constant \(deg\) \(rad\)
\(K\) - tortional stiffness constant - -
\(k_r\) - torsional spring constant \(lbf-ft\;/\;rad\) \(N-m\;/\;rad\)
\(n\) - total - -
\(J \;or\; j_i\) - total angular momentum - -
\(P\) - total concentrated load \(lb\) \(N\)
\(h_d\)   total discharge head \(ft\) \(m\)
\(TDH\) - total dissolved head \(ft\) \(m\)
\(TDS\) - total dissolved solids \(ppm\) \(mg\;/\;L\)
\(h_t\) - total head \(ft\) \(m\)
\(q_t\)   total heat \(Btu\) \(kJ\)
\(W\) - total load from a uniform distribution \(lb\) \(N\)
\(p_t\) - total pressure \(in\; wg\) \(Pa\)
\(U\) - total strain energy - -
\(h_s\)   total suction head \(ft\) \(m\)
\(T\) - total term - -
\( W_t\) - total work \(lbf-ft\) \(kW\)
\(\dot {t}\) - transfer rate - -
\(TU\) - transfer units - -
\(\gamma\) gamma transmissivity - -
\(\tau\) tau transmittance - -
\(T\) - transmitted torque \(lbf-ft\) \(N-m\)
\(\tau\) tau transmission coefficient - -
\(\epsilon\) epsilon true strain \(in\;/\;in\) \(m\;/\;m\)
\(\sigma\) sigma true stress \(lbf\;/\;in^2\) \(MPa\)
\(Pr_t\) - Turbulent Prandtl number dimensionless number dimensionless number