Pressure Loading of Thin-walled Spherical Vessel
Pressure Loading of thin-walled Spherical Vessel formulas |
||
\( \sigma_{sph} = p\;r\;/\;2\;t \) \( R = p\;r^2 \; \left( 1 - v \right) \;/\;2\;E\;t \) \( V = 2\;p\;\pi\;r^4 \; \left( 1 - v \right) \;/\;E\;t \) |
||
Symbol | English | Metric |
\( \sigma_{sph} \) (Greek symbol sigma) = stress | \(lbf\;/\;in^2\) | \(Pa\) |
\( p \) = uniform internal pressure | \(lbf\;/\;in^2\) | \(Pa\) |
\( r \) = radius | \( in \) | \( mm \) |
\( t \) = thickness | \( in \) | \( mm \) |
\( \mu \) (Greek symbol mu) = Poisson's ratio | \( dimensionless \) | |
\( E \) = modulus of elasticity | \(lbf\;/\;in^2\) | \(Pa\) |
\( R \) = increase in radius | \( in \) | \( mm \) |
\( V \) = increase in volume | \( in^3 \) | \( mm^3 \) |
Tags: Pressure Pressure Vessel