Exponent
Laws of Exponents
Exponent (also called Indices, the plural of index) is how mant times you multiply the number.
\(\large{ a^m = a }\) is base, \(\large{ m }\) is exponent
Laws of Exponents Formulas
\(\large{ a^0 = 1 }\)
\(\large{ a^1 = a }\)
\(\large{ a^m = \frac{1} {a^{-m} } }\)
\(\large{ a^{-m} = \frac{1}{a^{m} } }\)
\(\large{ a^{ \frac{1} {m} } = ^m \sqrt {a} }\)
\(\large{ a^{ \frac{m} {n} } = ^n \sqrt {a ^m} }\)
\(\large{ \frac {a^m} {a^n} = ^n \sqrt {a^{m-n} } }\)
\(\large{ a^m * a^n = a^{m+n} }\)
\(\large{ \left( a^m \right)^n = a^{mn} }\)
\(\large{ \left( a * b \right)^m = a^{m} * a^{n} }\)
\(\large{ \left( \frac {a} {b} \right)^m = \frac {a^m} {b^m} }\)