Matrix

on . Posted in Algebra

Matrix is a group of numbers arranged in a rectangular or square array using either brackets  \(\large{ [\;] }\)  or parentheses  \(\large{ (\;) }\).                          

\({  \begin{bmatrix} 4 & 7 & 2.54 \\ -9 & 3.1 & 3 \\ 13 & 1.2 & -9 \end{bmatrix} }\)   or   \({ \begin{pmatrix} 4 & 7 & 2.54 \\ -9 & 3.1 & 3 & \\ 13 & 1.2 & -9 \end{pmatrix}  }\)

 

  • Matrix addition - Matrices can be added term by term.                                                                                                                         \({  \begin{bmatrix} 4 & 7 & 2 \\ -9 & 3 & 3 \\ 13 & 1 & -9 \end{bmatrix} }\) \({\;+\;}\) \({ \begin{bmatrix} 5 & 3 & -2 \\ -4 & 6 & 2 \\ 11 & -1 & 14 \end{bmatrix}  }\) \({\;=\;}\) \({ \begin{bmatrix} 9 & 10 & 0 \\ -13 & 9 & 5 \\ 24 & 0 & 5 \end{bmatrix}  }\)

 

  • Matrix subtraction - Matrices can be subtracted term by term.                                                                                                             \({  \begin{bmatrix} 4 & 7 & 2 \\ -9 & 3 & 3 \\ 13 & 1 & -9 \end{bmatrix} }\) \({\;-\;}\) \({ \begin{bmatrix} 5 & 3 & -2 \\ -4 & 6 & 2 \\ 11 & -1 & 14 \end{bmatrix}  }\) \({\;=\;}\) \({ \begin{bmatrix} -1 & 4 & 4 \\ -5 & -3 & 1 \\ 2 & 2 & -23 \end{bmatrix}  }\)