# Trig Functions

Written by Jerry Ratzlaff on . Posted in Trigonometry

• Hypotenuse: The side opposite the right angle "C", is the hypotenuse "c".
• Opposite Leg: The side opposite to the angle needed "A", is the opposite side "a".
• Adjacent Leg: The side opposite the hypotenuse and next to the angle needed, is the adjacent side "b".

## abbreviations

$$\large{ \ sine = sin }$$

$$\large{ \ cosine = cos }$$

$$\large{ \ tangent = tan }$$

$$\large{ \ cotangent = cot }$$

$$\large{ \ cosecant = csc }$$

$$\large{ \ secant = sec }$$

$$\large{ \ arcsine = arcsin }$$

$$\large{ \ arccosine = arccos }$$

$$\large{ \ arctangent = arctan }$$

$$\large{ \ arccotangent = arccot }$$

$$\large{ \ arccosecant = arccsc }$$

$$\large{ \ arcsecant = arcsec }$$

## Trig Functions formulas

$$\large{ \ sin \; \theta= \frac {opposite}{hypotenuse} }$$

$$\large{ \ cos \; \theta= \frac {adjacent}{hypotenuse} }$$

$$\large{ \ tan \; \theta= \frac {opposite}{adjacent} }$$

$$\large{ \ csc \; \theta= \frac {hypotenuse}{opposite} }$$

$$\large{ \ sec \; \theta= \frac {hypotenuse}{adjacent} }$$

$$\large{ \ cot \; \theta= \frac {adjacent}{opposite} }$$

$$\large{ \ arcsin \; \theta= \frac {opposite}{hypotenuse} }$$

$$\large{ \ arccos \; \theta= \frac {adjacent}{hypotenuse} }$$

$$\large{ \ arctan \; \theta= \frac {opposite}{adjacent} }$$

$$\large{ \ arccsc \; \theta= \frac {hypotenuse}{opposite} }$$

$$\large{ \ arcsec \; \theta= \frac {hypotenuse}{adjacent} }$$

$$\large{ \ arccot \; \theta= \frac {adjacent}{opposite} }$$

Tags: Surveying Equations