Skip to main content

Momentum Differential

 

Momentum Differential Formula

\(  dp \;=\;  m \cdot dv  \) 
Symbol English Metric
\( dp \) = Momentum Differential \(lbm-ft \;/\; sec\) \(kg-m \;/\; s\)
\( m \) = Mass \(lbm\) \(kg\)
\( dv \) = Infinitesimally Small Change in Velocity \( sec \) \( s \)

Momentum differential, abbreviated as \(dp\), is an infinitesimally small change in an object's momentum.  The momentum differential captures this tiny, instantaneous change rather than a finite difference, allowing physicists to analyze motion with precision when forces vary with time.  The momentum differential is used when studying systems with variable forces, continuous mass flow, or dynamic interactions where instantaneous behavior matters. 

Piping Designer Logo 1

 

Momentum Differential (Mass not Constant) Formula

\(  dp \;=\;  v \cdot dm  + m \cdot dv \) 
Symbol English Metric
\( dp \) = Momentum Differential \(lbm-ft \;/\; sec\) \(kg-m \;/\; s\)
\( v \) = Velocity \(ft \;/\; sec \) \(m \;/\; s \)
\( dm \) = Infinitesimally Small Change in Mass \(lbm\) \(kg\)
\( m \) = Mass \(lbm\) \(kg\)
\( dv \) = Infinitesimally Small Change in Velocity \(ft \;/\; sec \) \(m \;/\; s \)