Piping Designer, LLC Find us on Facebook
InstagramLogo
  • Forgot your password?
  • Forgot your username?
  • Create an account
  • About
  • View my Cart
  • Home
    • Sitemap
    • List All Categories
    • Piping Designer Jobs
    • List of All Tags
  • Science
  • Mathematics
    • Algebra
    • Conversion Tables
    • Geometry
    • Trigonometry
  • Physics
    • Classical Mechanics
    • Constants
    • Dimensionless Numbers
    • Electromagnetism
    • Fluid Dynamics
    • Nomenclature
    • Quantum Mechanics
    • Relativity
    • Thermodynamics
  • Engineering
    • Chemical
    • Civil
    • Electrical
    • Geotechnical
    • Mechanical
    • Systems
  • Datasheets
    • Accessory Datasheets
    • Fastener Datasheets
    • Fitting Datasheets
    • Flange Datasheets
    • Gasket Datasheets
    • Pipe & Tubing Dimensions
    • Piping Layout Information
    • Valve Datasheets
  • Standards
  • Store
    • Accessory Drawings
    • Isometric Drawing Packages
    • Flange Drawing Packages
    • Fitting Drawing Packages
    • Miscellaneous Drawing Packages
    • Pipe Support Drawing Package
    • Valve Drawing Packages
  • Trade Associations
    • Trade Association Search
  • The World
HomePhysicsDimensionless NumbersRichardson Number
Email
Print

Richardson Number

Written by Jerry Ratzlaff on 02 December 2019. Posted in Dimensionless Numbers

Richardson number, abbreviated as Ri, a dimensionless number, is the ratio of the buoyancy term to the flow shear term.

 

Richardson Number formula

\(\large{ f = \frac{ Gr }{ Re^2 }  }\)   

Where:

\(\large{ Ri }\) = Richardson number

\(\large{ Gr }\) = Grashof number

\(\large{ Re }\) = Reynolds number

 

Tags: Equations for Buoyancy

Latest Articles

  • Salvage Value
  • Operating Income
  • Market Share
  • Cost of Goods Sold
  • Net Cash Flow
Powered by Warp Theme Framework