Bejan Number - Mass Transfer formula |
||
\( Be \;=\; \dfrac{ \Delta p \cdot l^2 }{ \mu \cdot D_m }\) (Bejan Number - Mass Transfer) \( \Delta p \;=\; \dfrac{ Be \cdot \mu \cdot Dm }{ l^2 }\) \( l \;=\; \sqrt{ \dfrac{ Be \cdot \mu \cdot Dm }{ \Delta p } }\) \( \mu \;=\; \dfrac{ \Delta p \cdot l^2 }{ Be \cdot Dm }\) \( Dm \;=\; \dfrac{ \Delta p \cdot l^2 }{ Be \cdot \mu }\) |
||
Symbol | English | Metric |
\( Be \) = Bejan Number | \(dimensionless\) | \(dimensionless\) |
\( \Delta p \) = Pressure Drop | \(lbf\;/\;in^2\) | \(Pa\) |
\( l \) = Length of Channel | \(ft\) | \(m\) |
\( \mu \) (Greek symbol mu) = Dynamic Viscosity | \(lbf-sec\;/\;ft^2\) | \( Pa-s \) |
\( D_m \) = Mass Diffusivity | \(ft^2\;/\;sec\) | \(m^2\;/\;s\) |
Bejan number - mass transfer, abbreviated as Be, a dimensionless number, is the pressure drop along a channel of length.